#' @include ShapeForecaster.R #' #' @title Neighbors Shape Forecaster #' #' @description Predict tomorrow as a weighted combination of "futures of the past" days. #' Inherits \code{\link{ShapeForecaster}} NeighborsShapeForecaster = setRefClass( Class = "NeighborsShapeForecaster", contains = "ShapeForecaster", methods = list( initialize = function(...) { callSuper(...) }, predict = function(today, memory, horizon, ...) { # (re)initialize computed parameters params <<- list("weights"=NA, "indices"=NA, "window"=NA) first_day = max(today - memory, 1) # The first day is generally not complete: if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2))) first_day = 2 # Predict only on non-NAs days (TODO:) if (any(is.na(data$getSerie(today)))) return (NA) # Determine indices of no-NAs days followed by no-NAs tomorrows fdays_indices = c() for (i in first_day:(today-1)) { if ( !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) ) fdays_indices = c(fdays_indices, i) } #GET OPTIONAL PARAMS # Similarity computed with exogenous variables ? endogenous ? both ? ("exo","endo","mix") simtype = ifelse(hasArg("simtype"), list(...)$simtype, "exo") simthresh = ifelse(hasArg("simthresh"), list(...)$simthresh, 0.) kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") mix_strategy = ifelse(hasArg("mix_strategy"), list(...)$mix_strategy, "neighb") #or "mult" same_season = ifelse(hasArg("same_season"), list(...)$same_season, TRUE) if (hasArg(h_window)) return (.predictAux(fdays_indices, today, horizon, list(...)$h_window, kernel, simtype, simthresh, mix_strategy, FALSE)) #END GET # Indices for cross-validation; TODO: 45 = magic number indices = getSimilarDaysIndices(today, limit=45, same_season=same_season) #indices = (end_index-45):(end_index-1) # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days errorOnLastNdays = function(h, kernel, simtype) { error = 0 nb_jours = 0 for (i in indices) { # NOTE: predict only on non-NAs days followed by non-NAs (TODO:) if (!any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1)))) { nb_jours = nb_jours + 1 # mix_strategy is never used here (simtype != "mix"), therefore left blank prediction = .predictAux(fdays_indices, i, horizon, h, kernel, simtype, simthresh, "", FALSE) if (!is.na(prediction[1])) error = error + mean((data$getCenteredSerie(i+1)[1:horizon] - prediction)^2) } } return (error / nb_jours) } h_best_exo = 1. if (simtype != "endo" && !(simtype=="mix" && mix_strategy=="neighb")) { h_best_exo = optimize(errorOnLastNdays, interval=c(0,10), kernel=kernel, simtype="exo")$minimum } if (simtype != "exo") { h_best_endo = optimize(errorOnLastNdays, interval=c(0,10), kernel=kernel, simtype="endo")$minimum } if (simtype == "endo") { return (.predictAux(fdays_indices, today, horizon, h_best_endo, kernel, "endo", simthresh, "", TRUE)) } if (simtype == "exo") { return (.predictAux(fdays_indices, today, horizon, h_best_exo, kernel, "exo", simthresh, "", TRUE)) } if (simtype == "mix") { return (.predictAux(fdays_indices, today, horizon, c(h_best_endo,h_best_exo), kernel, "mix", simthresh, mix_strategy, TRUE)) } }, # Precondition: "today" is full (no NAs) .predictAux = function(fdays_indices, today, horizon, h, kernel, simtype, simthresh, mix_strategy, final_call) { dat = data$data #HACK: faster this way... fdays_indices = fdays_indices[fdays_indices < today] # TODO: 3 = magic number if (length(fdays_indices) < 3) return (NA) if (simtype != "exo") { h_endo = ifelse(simtype=="mix", h[1], h) # Distances from last observed day to days in the past distances2 = rep(NA, length(fdays_indices)) for (i in seq_along(fdays_indices)) { delta = dat[[today]]$serie - dat[[ fdays_indices[i] ]]$serie # Require at least half of non-NA common values to compute the distance if (sum(is.na(delta)) <= 0) #length(delta)/2) distances2[i] = mean(delta^2) #, na.rm=TRUE) } sd_dist = sd(distances2) simils_endo = if (kernel=="Gauss") { exp(-distances2/(sd_dist*h_endo^2)) } else { #Epanechnikov u = 1 - distances2/(sd_dist*h_endo^2) u[abs(u)>1] = 0. u } } if (simtype != "endo") { h_exo = ifelse(simtype=="mix", h[2], h) # TODO: [rnormand] if predict_at == 0h then we should use measures from day minus 1 M = matrix( nrow=1+length(fdays_indices), ncol=1+length(dat[[today]]$exo_hat) ) M[1,] = c( dat[[today]]$level, as.double(dat[[today]]$exo_hat) ) for (i in seq_along(fdays_indices)) { M[i+1,] = c( dat[[ fdays_indices[i] ]]$level, as.double(dat[[ fdays_indices[i] ]]$exo_hat) ) } sigma = cov(M) #NOTE: robust covariance is way too slow sigma_inv = qr.solve(sigma) # Distances from last observed day to days in the past distances2 = rep(NA, nrow(M)-1) for (i in 2:nrow(M)) { delta = M[1,] - M[i,] distances2[i-1] = delta %*% sigma_inv %*% delta } sd_dist = sd(distances2) simils_exo = if (kernel=="Gauss") { exp(-distances2/(sd_dist*h_exo^2)) } else { #Epanechnikov u = 1 - distances2/(sd_dist*h_exo^2) u[abs(u)>1] = 0. u } } if (simtype=="mix") { if (mix_strategy == "neighb") { #Only (60) most similar days according to exogen variables are kept into consideration #TODO: 60 = magic number keep_indices = sort(simils_exo, index.return=TRUE)$ix[1:(min(60,length(simils_exo)))] simils_endo[-keep_indices] = 0. } else #mix_strategy == "mult" { simils_endo = simils_endo * simils_exo } } similarities = if (simtype != "exo") { simils_endo } else { simils_exo } if (simthresh > 0.) { max_sim = max(similarities) # Set to 0 all similarities s where s / max_sim < simthresh, but keep at least 60 ordering = sort(similarities / max_sim, index.return=TRUE) if (ordering[60] < simthresh) { similarities[ ordering$ix[ - (1:60) ] ] = 0. } else { limit = 61 while (limit < length(similarities) && ordering[limit] >= simthresh) limit = limit + 1 similarities[ ordering$ix[ - 1:limit] ] = 0. } } prediction = rep(0, horizon) for (i in seq_along(fdays_indices)) prediction = prediction + similarities[i] * dat[[ fdays_indices[i]+1 ]]$serie[1:horizon] prediction = prediction / sum(similarities, na.rm=TRUE) if (final_call) { params$weights <<- similarities params$indices <<- fdays_indices params$window <<- if (simtype=="endo") { h_endo } else if (simtype=="exo") { h_exo } else { c(h_endo,h_exo) } } return (prediction) } ) )