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Abstract We propose to investigate spatial synchrony in population dynamics from
monitoring data. We develop a statistical procedure to delineate populations of sites
with synchronous dynamics from short time series. The procedure relies on a new
norm, the synchronous total variation norm, which promotes synchrony in the esti-
mation of the sites dynamics. The method is tested on some synthetic data sets and is
applied on data from the French breeding bird monitoring program.

Keywords Monitoring data · Penalized log-likelihood · Primal-dual optimization ·
Synchronous population · �1-penalty

1 Introduction

Spatial synchrony in population dynamics, the spatial autocorrelation of temporal
variations in the abundance of geographically disjoint populations, is a widespread
phenomenon that has received significant attention from ecologists since the 1990es
(see Liebhold et al. 2004 for a review). The primary mechanisms underlying spatial
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synchrony are thus generally well-known: (1) spatial synchrony can be an endoge-
nous phenomenon attributable to dispersal among populations (Ranta et al. 1995); (2)
it may result from trophic interactions in which predator-prey dynamics are synchro-
nized by predator mobility (Hassell 2000); and (3) it may be driven by biotic (e.g.
resources) or abiotic (e.g. weather or climate) synchronous exogenous factors. The
latter phenomenon of environmental forcing is known as the Moran effect (Moran
1953).

Distinguishing between these mechanisms causing spatial synchrony in popula-
tion dynamics would be of paramount importance to understand the contribution of
biotic and abiotic factors to the regulation of populations and to explore the impact
of global change on population dynamics and probabilities of extinction (Heino et al.
1997), but this remains a difficult task (Liebhold et al. 2004). A promising approach,
which has received little attention so far (but see Ranta and Kaitala 1997), would be
to explore how spatial synchrony in population dynamics varies through space. Spe-
cifically, we expect that the identification of areas with synchronous dynamics within
each of them, but with contrasting dynamics among them will provide critical infor-
mation to assess the spatial scale of synchrony and improve our understanding of the
relationship between climate and population dynamics.

Exploring the spatial heterogeneity of synchrony in population dynamics however
calls for new statistical tools. Most methods that were developed to analyse spatial
synchrony are directed toward long time-series data over a limited number of study
sites, and often target populations with oscillatory dynamics (phase synchrony analy-
sis, e.g. Grenfell et al. 2001). With such design, it is usually possible to identify with
certainty the best grouping of sites for which sites within a group are more synchronic
than sites from other groups, due to the limited number of combination of sites and
the accuracy of the estimation of synchronization. Another situation occurs when one
wants to delineate frontiers across a dense number of sites to separate asynchronous
populations of sites. Such data are available through extensive biodiversity monitor-
ing programmes that were generally launched at best after the 1992 Earth summit;
there are thus characterized by a potentially large number of monitored sites but a
limited time span (one or two decades, Schmeller et al. 2009). Then, there are way too
many possibilities of grouping sites to explore them systematically, and quite much
imprecision in assessing synchrony among sites due to short time series (and possibly
sampling variance).

Here, we present a new statistical method to identify geographical regions with syn-
chronous population dynamics from abundance monitoring data. The identification of
the regions is achieved by minimizing a penalized log-likelihood criterion. This cri-
terion is the sum of the negative log-likelihood and a convex penalty which promotes
synchronous dynamics. We propose to penalize proportionally to a new norm, the syn-
chronous total variation (STV) norm, which is related to the popular Total-Variation
norm used for spatial segmentation (Chambolle et al. 2010). The resulting criterion is
convex and the minimization can be performed efficiently with a primal-dual optimi-
zation scheme.

The method is tested using two contrasting datasets: (1) a synthetic dataset where
the number of regions and their dynamics are known a priori and (2) real data from
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the French breeding bird monitoring program, where the abundance of a widespread
passerine species is monitored over 9 years in 361 randomly distributed sites.

2 Model and estimation procedure

2.1 Monitoring data

Typical population monitoring data consist of abundance counting over multiple sites
s at different dates t . Ideally, observations at site s and date t should be repeated
(Schmeller 2008). In the following, we assume that we have at disposal such a data
set, although our model does not require the existence of such repetitions. We write
xs for the location of the site s and Zstk for the kth observation at site s and date t .
These count data are assumed to be distributed according to a Poisson distribution.

2.2 Statistical model

We have in mind that each site s has its own mean abundance, but there exists some
synchrony among the population-size variations. More formally, we expect a partition
of the sites s into regions R1, R2, . . . , so that all sites from the same region R share
the same temporal dynamic t → ρR(t). Therefore, in order to identify synchronous
populations, we ideally would like to fit the following model

Zstk ∼ Poisson(exp(θs + f (xs, t))) (1)

with f (x, t) =
∑

R

ρR(t)1R(x) and f (., 1) = 0,

the regions R and the parameters θs , ρR(t) being unknown. The site effect exp(θs) is
proportional to the mean abundance of the site s.

A natural estimation procedure is to minimize over θ and f the negative log-like-
lihood of the observations Z

LZ (θ, f ) =
∑

s,t,k

[eθs+ f (xs ,t) − Zstk(θs + f (xs, t))+ log(Zstk !)],

with the constraint that f is of the form f (x, t) =∑
R ρR(t)1R(x) with f (., 1) = 0.

Unfortunately, the minimization

(θ̂ , f̂ ) ∈ argmin
{
LZ (θ, f ) : θs ∈ R, f (., 1) = 0 and f (x, t)=

J∑

j=1

ρ j (t)1R j (x)
}

(2)

is intractable in practice: while we can estimate θ̂s and ρ̂ j (t) efficiently when the
regions R j are known, the exhaustive search over all possible regions R j is com-
putationally very intensive and cannot be performed in high-dimensions. In such a
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situation, a classical approach is to relax the minimization Problem (Tibshirani 1996;
Rudin et al. 1992; Chambolle et al. 2010; Candès and Recht 2009; Candès and Tao
2010) and solve instead a convex problem for which we have powerful optimization
tools.

2.3 Convex relaxation of problem (2)

A nice feature of Problem (2) is that the functional (θ, f )→ LZ (θ, f ) is convex. We
can then relax the Problem (2) by solving the unconstraint problem

(θ̂ , f̂ ) ∈ argmin
θ, f
{LZ (θ, f )+�( f )} ,

where �( f ) is a convex penalty which promotes solutions of the form f̂ (x, t) =∑J
j=1 ρ j (t)1R j (x). Such relaxation procedures have been successfully applied in

many statistical settings, for example for variable selection (Tibshirani 1996; Bickel et
al. 2009), noisy matrix completion (Candès and Recht 2009; Candès and Tao 2010),
image denoising (Rudin et al. 1992; Chambolle et al. 2010), etc. We design below
a penalty �( f ) suited for our problem. This penalty is closely related to the Total
Variation norm (TV) that we briefly present in the next section.

2.3.1 Total variation norm TV(F)

Let D be a bounded open set of Rd and L (F) be a convex functional on real valued
functions F : D → R. Similarly to the Problem (2), the simpler problem of minimiz-
ing L (F) among the functions F(x) = ∑J

j=1 a j 1R j (x) is numerically intractable
in general. A classical convex relaxation of this problem is to solve the unconstraint
convex problem (Rudin et al. 1992; Chambolle et al. 2010)

F̂ ∈ argmin {L (F)+ α TV(F)}

with α > 0, and TV(F) the Total Variation norm defined as follows. When F is C1,
the Total Variation norm of F is defined by TV(F) = ∫

D ‖∇F(x)‖ dx . This definition
is extended to any function F ∈ L1

loc(D) by

TV(F) = sup
{
−

∫

D

F(x)div(φ(x)) dx : φ ∈ C∞c (D,Rd) and ‖φ‖∞ ≤ 1
}

where C∞c (D,Rd) is the space of C∞ functions with compact support from D to Rd

and ‖φ‖∞ = supx∈D |φ(x)|. For example, the Total Variation of a piecewise constant
F : ]0, 1[ → R is

TV(F) =
J−1∑

j=1

|a j+1 − a j |, for F(x) =
J∑

j=1

a j 1R j (x)
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with R j = [x j−1, x j [ ∩ ]0, 1[ and 0 = x0 < x1 < · · · < xJ = 1. In higher dimen-
sion, for any (measurable) subset R ⊂ Rd , the total variation norm TV(1R) gives
the perimeter of R. We refer to Chambolle et al. (2010) for more details on TV and
to Rudin et al. (1992), Chambolle et al. (2010) for implementations on image denoising
or segmentation.

2.3.2 Synchronous total variation norm STV( f )

For relaxing Problem (2), we introduce a new spatiotemporal STV norm suited to our
problem. Similar to the problem described in the previous section, we seek a segmen-
tation f (x, t) =∑

j ρ j (t)1R j (x) for each year t . The point is that we want the regions
R j to be the same for all years t (we say that the regions are synchronous).

For D a bounded open set of Rd and f : D × {1, . . . , T } → R which is C1 in the
variable x for each t , we define the STV norm as

STV( f ) =
∫

D

max
t
‖∇x f (x, t)‖ dx,

where ∇x is the gradient in the variable x . We extend this definition to functions
f such that f (., t) ∈ L1

loc(D) for each t ∈ {1, . . . , T }, as follows:

STV( f ) = sup

⎧
⎨

⎩−
∑

t

∫

D

f (x, t)divx (φ(x, t)) dx : (i) φ(., t) ∈ C∞c (D,Rd)

(i i)
∥∥ ∑

t ‖φ(., t)‖ ∥∥∞ ≤ 1

⎫
⎬

⎭ ,

where divx is the divergence operator acting on the variable x . We refer to the
“Appendix” for the proof that these two definitions of STV( f ) coincide when f
is regular. To fix up ideas, let us give the STV-norm of a function which is “syn-
chronous” piecewise constant in dimension d = 1. In the domain D =]0, 1[ , we
have

STV( f ) =
J−1∑

j=1

max
t
|ρ j+1(t)− ρ j (t)|, when f (x, t) =

J∑

j=1

ρ j (t)1R j (x)

with R j = [x j−1, x j [ ∩D and 0 = x0 < x1 < · · · < xJ = 1. Let us explain from this
formula the purpose of introducing the norm STV. Assume that at some time t∗, the
function f (., t∗) has a jump of size�∗ at location x j . Then, we see that in terms of the
STV-norm, there is no cost for f to have |ρ j+1(t)− ρ j (t)| as high as �∗ for all time
t ∈ {1, . . . , T }. Loosely speaking, if f has a jump at x∗ at some time t∗, then there is
no cost (in terms of the STV-norm) for f to have a jump at x∗ for each time t . The
STV-norm then promotes segmentation in the spatial variable x which is synchronous
across the times t .
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Let us see now how to relax the Problem (2). Since the STV-norm of f is the
supremum of the linear functional

Lφ : f →−
∑

t

∫

D

f (x, t)divx (φ(x, t)) dx

the functional f → STV( f ) is convex. In particular, we can relax the Problem (2) by
solving the unconstraint convex problem

(θ̂ , f̂ ) ∈ argmin
θ, f
{LZ (θ, f )+ α STV( f )} , (3)

with boundary condition f (., 1) = 0, for some α > 0.

2.4 The estimation procedure

Let us write fst for f (xs, t). A natural discretization of STV( f ) is

∑

s

max
t
‖δs fst‖

where δs fst is a discrete approximation of ∇x f (xs, t). When the sites s are spread on
a regular grid in R2, the norm ‖∇x f (xs, t)‖ can be conveniently approximated by the
norm of the increments of f in two orthogonal directions. When, the locations xs are
irregularly spread, we can no more use this approximation. We approximate here the
norm ‖∇x f (xs, t)‖ by

max
u∈V (s)

| fst − fut |

where V (s) is a neighborhood of s. For simplicity, we will assume that the neighbor-
hood V is reflexive: u ∈ V (s) if and only if s ∈ V (u).

We then propose to estimate θ and f by minimizing the convex problem

(θ̂ , f̂ ) ∈ argmin
θ, f

{ ∑

s,t,k

[
eθs+ fst − Zstk(θs + fst )

]
+ α

∑

s

max
t

max
u∈V (s)

| fst − fut |
}

(4)

with boundary condition fs1 = 0 for all s. This minimization can be done by using a
primal-dual (or “Arrow-Hurwicz”) optimization scheme. Let us write the discretized
STV norm in a dual form

∑

s

max
t

max
u∈V (s)

| fst − fut |

= sup
{∑

s

∑

t

∑

u∈V (s)

( fst − fut )φs(u, t) : |φs |�1 ≤ 1 for all s
}
,
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where |φs |�1 =∑
u,t |φs(u, t)| and introduce the function

F (θ, f, φ) =
∑

s,t,k

[
eθs+ fst − Zstk(θs + fst )

]
+ α

∑

s

∑

t

∑

u∈V (s)

( fst − fut )φs(u, t).

The Problem (4) can then be written as

(θ̂ , f̂ ) ∈ argmin
θ, f

sup
φ

{
F (θ, f, φ) |φs |�1 ≤ 1 for all s

}
.

The idea of the primal-dual optimization, is to alternate gradient descents of F (θ, f, φ)
in the variables f and θ , with gradient ascents of F (θ, f, φ) in the variable φ plus
a projection of φs onto the unit �1-ball. We refer to the “Appendix” for a detailed
description of the algorithm. When the gradient steps are small enough, Theorem 3.14
in Chambolle et al. (2010) ensures that the algorithm converges to the solution of (4).

2.5 “Adaptive” version of the procedure

Similarly to the so-called Adaptive-Lasso (Zou 2006), we propose an “adaptive”
version of our procedure. The idea is to replace the norm STV( f ) in (3) by

∫

D

max
t

‖∇x f (x, t)‖
‖∇x f̂ init(x, t)‖ dx,

were f̂ init is a preliminary estimator of f . The motivation for replacing STV( f ) by this
rescaled norm is to avoid to over-penalize large discontinuities compared to small dis-
continuities. It is expected that we have more accurate estimations with such schemes.
For example, in the context of linear regression, it has been shown that contrary to
the Lasso estimator, the Adaptive-Lasso estimator is consistent in variable selection
whatever the design, see Zou (2006).

As a preliminary estimator f̂ init, we use a spatially-regularized version of the max-
imum likelihood of estimator of f , obtained by solving for some β > 0

(θ̂ init, f̂ init) ∈ argmin
θ, f

{
LZ (θ, f )+ β

2

∑

t

∫

D

‖∇x f (x, t)‖2dx
}
,

with boundary condition f (., 1) = 0. We penalize the negative log-likelihood
LZ (θ, f ) by the L2-norm of the gradient of f in order to get a smooth solution f̂ init. As
before, the L2-norm

∑
t

∫
D ‖∇x f (x, t)‖2dx could be discretized by

∑
s
∑

t |δs fst |2
where δs fst is a discrete approximation of ∇x f (xs, t). For computational efficiency,
we will rather work with a different version and compute (θ̂ init, f̂ init) by minimizing
for some β > 0
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(θ̂ init, f̂ init) ∈ argmin
θ, f

{ ∑

s,t,k

[
eθs+fst−Zstk(θs + fst )

]
+ β

2

∑

s,t

∑

u∈V (s)

( fst − fut )
2

card(V (s))

}

(5)

with boundary condition f (., 1) = 0. Finally, the adaptive estimator (θ̂ , f̂ ) is obtained
by minimizing for some α > 0

(θ̂ , f̂ ) ∈ argmin
θ, f

{ ∑

s,t,k

[
eθs+ fst − Zstk(θs + fst )

]

+α
∑

s

max
t

max
u∈V (s)

| fst − fut |
maxt | f̂ init

st − f̂ init
ut |

}

with boundary condition f (., 1) = 0. This optimization is performed with the primal-
dual optimization algorithm described in the “Appendix”.

3 Numerical experiments

We implement the estimation procedure both on real and synthetic data. We first
investigate the patterns obtained when applying the procedure on bird monitoring
data. Then, we analyze the accuracy and the limits of the procedure on three synthetic
data sets.

3.1 Analysis of bird monitoring data

We use the 2001–2009 data from the French Breeding Bird Survey (FBBS), a standard-
ized monitoring program in which skilled volunteer ornithologists identify breeding
birds by song or visual contact twice each spring in ca. 1,700 randomly selected
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Fig. 1 Left PCA of ( f̂ ) and kmeans clustering. Right Regions selected by kmeans
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Fig. 2 Left PCA of f̂ adapt and kmeans clustering. Right Regions selected by kmeans

2×2 km plots (Jiguet et al. 2011). In each plot, observers record all individuals during
a five minutes period in 10 evenly distributed point counts, which are located at least
300 m apart. For a given point count, we retain the maximum count of the two annual
visits. For this first implementation of the estimation procedure, we focus on one of
the most abundant species in France, the blackcap (Sylvia atricapilla L.), a generalist
passerine species that occurs in many habitat types. The population size of this spe-
cies has been increasing at a national scale over the past 10 years. We retain only sites
(2 × 2 km plots) in which the species was seen at least once between 2001 and 2009
and for which we have at least 7 years of data, which left us with a total of 361 sites
(right-hand side of Fig. 1).

The neighborhood V is obtained by the following procedure:

– link each s to its 4 nearest neighbors,
– link sites s, u with distance less than 100 km.

With the choice α = 1.35 we obtain the results displayed in Fig. 1. The left-hand
side of Fig. 1 shows for each site s the projection of f̂ [s, ] on the plan spanned by the
two first principal axes of PCA ( f̂ ). The right-hand side of Fig. 1 shows the regions
selected when clustering f̂ with kmeans. Figure 2 displays the same results for the
adaptive procedure. The regions delimited by the simple procedure and the adaptive
procedure are mostly the same, except that the alpine region is split into 3 regions by
the adaptive procedure.

Finally, the temporal dynamic for each group of Fig. 1 is given in Fig. 3. The tempo-
ral dynamic is obtained by fitting (1) with the regions R of Fig. 1. The dotted lines give
mean( f̂ [R == r, ]). We notice a strong shrinkage of mean( f̂ [R == r, ]) towards
the global behavior. We emphasize that due to the bias towards the mean created by
the STV norm, the quantity mean( f̂ [R == r, ]) should not be used for estimating
trends.

Results are consistent with what we know on biogeographic regions in France. They
separate mountain areas and mediterranean areas from the atlantic and continental
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Fig. 3 Temporal dynamics: global and for each region. Plain: model (1) fitted with the regions R estimated.
Dots: mean( f̂ [R == r, ])

regions. We observe a decline in abundance in warm and south regions, whereas pop-
ulation sizes are increasing in temperate and northern areas.

3.2 Synthetic experiments

We investigate the ability of the procedure to detect synchronous populations on three
synthetic data sets. We generate 300 sites at random in the square. We divide the sites
in three groups with different temporal dynamics given in Fig. 4. For each site s and
time t we generate observations according to (1) where the θs have been sampled
according to a gaussian law. Finally, 10 % of the data is erased (at random) giving
incomplete data.

The accuracy of the results depends on the geometry of the regions. For simple
geometries, the estimator (4) with α = 2.2 recovers the groups, see Fig. 5, Model 1
and Model 2. For more complex geometries, where there is a “central” region, the
estimator fails to clearly identify the central region, see Fig. 5, Model 3. This can be
explained by the fact that it is much more costly in term of the STV-norm to identify a
region in the center than in the border. Actually, the STV-norm penalizes the frontier
of a region proportionally to its length times the size of the “jump” at the frontier.
For border regions, only the “inside” frontier enters into the STV-norm, whereas for
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Fig. 4 Synthetic temporal
dynamic
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central regions, the whole frontier enters into the STV-norm. This difference can
explain that central regions are harder to identify.

In these experiments, the adaptive scheme does not significantly change the results,
see Fig. 5, column 3. We mainly observe that the clusters are more tight.

4 Discussion

The monitoring data from the French Breeding Bird Survey (FBBS) presents a strong
spatial heterogeneity. In Figs. 1 and 2, we notice that the frontiers of the delimited
regions tend to go through some areas with low-density of sampling points. There-
fore, it is unclear whether the estimated frontiers reflect the distribution of the sites or
the boundaries of some synchronous populations. The experiments on synthetic data
suggest that the estimation procedure can recover simple peripheral regions, whereas
the detection of central regions can be more challenging. We also note in Figs. 1 and 2
that some regions crossed by areas of low-density of sampling points are not split into
several regions. These features suggest that the estimated regions do not only reflect
the distribution of the sites.

It is interesting to observe the patterns produced by f̂ for different values of α > 0.
The problem of the optimal choice of α remains tricky. We cannot rely on standard
asymptotic criteria such as BIC due to the high-dimensional nature of the data. A
natural idea is to apply V -fold Cross-Validation to select α. Nevertheless, an optimal
choice of α in terms of the prediction error can lead to inconsistency in terms of the
selected regions due to the shrinking effect of the STV penalty (see Meinshausen and
Bühlman 2006 for a similar discussion for the Lasso). When the interest is on the
selected regions, we suggest to first apply our procedure with different values of α
to obtain different candidate partitions, and then to apply cross-validation to select
among the different partitions. For a given partition R, the model (1) can be fitted on
the learning set and then test on the validation set.
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Fig. 5 Synthetic experiments. First column: “true” regions. Second column: projection of { f̂ [xs , ],
s ∈ S } onto the the 2 first axes given by the PCA. Third column: projection of the adaptive estimator
{ f̂ adapt[xs , ], s ∈ S } onto the the 2 first axes given by the PCA

Overall, our analyses of the population dynamics of a single species, the blackcap,
yielded a partition of France that suggests a predominant role of climate forcing in
spatial synchrony of bird population dynamics, together with a possible role of moun-
tainous area in isolating populations with different dynamic. Our two approaches
identified five to seven regions, with temporal declines in abundance in southernmost
areas (especially in Mediterranean regions) and stable or increasing abundances else-
where, which is consistent with a negative impact of climate warming in warm areas
and a general tendency of European bird populations and communities to shift north-
ward (Devictor et al. 2008). This approach now needs to be extended to other species
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and to broader spatial scales, so that we can compare the number and identity of
synchronous regions, as well as the spatial scale of temporal synchrony in population
dynamics across taxa with contrasting ecological and life-history traits (e.g. dispersal
ability, latitudinal breeding distribution, ecological specialization, etc.) or between
preys and predators. Several studies suggest for example that more mobile species
tend to be more synchronized, although this may depend on spatial scale (Sutcliffe
et al. 1996; Paradis et al. 1999). Comparing the spatial heterogeneity in synchrony
of population dynamics across species could ultimately provide critical information
for understanding the drivers of the dynamics of populations and communities facing
global change.
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Appendix

A. Consistency of the definitions of STV-norm

We prove in this section that the supremum

sup
{
−

∑

t

∫

D

f (x, t)divx (φ(x, t)) dx : φ(., t) ∈ C∞c (D,Rd ) and
∥∥∥

∑

t

‖φ(., t)‖
∥∥∥∞ ≤ 1

}

(6)

equals
∫
D maxt ‖∇x f (x, t)‖ dx for any function f such that f (., t) is C1 for all time

t ∈ {1, . . . , T }.
First, for any φ such that φ(., t) ∈ C∞c (D,Rd) for all t ∈ {1, . . . , T }, we have by

integration by parts and Hölder inequality

−
∑

t

∫

D

f (x, t)divx (φ(x, t)) dx =
∑

t

∫

D

∇x f (x, t).φ(x, t) dx

0 ≤
∫

D

max
t
‖∇x f (x, t)‖

∑

t

‖φ(x, t)‖ dx

≤
∥∥∥

∑

t

‖φ(., t)‖
∥∥∥∞

∫

D

max
t
‖∇x f (x, t)‖ dx .

It then follows that the supremum (6) is not larger than
∫
D maxt ‖∇x f (x, t)‖ dx .

Conversely, write T (x) = inf {t : ‖∇x f (x, t)‖ = maxt ‖∇x f (x, t)‖} and define
Dt by

Dt = {x ∈ D : T (x) = t and ∇x f (x, t) �= 0} .
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The function

ψ(x, t) = ∇x f (x, t)

‖∇x f (x, t)‖1Dt (x)

fulfills

∑

t

∫

D

∇x f (x, t).ψ(x, t) dx=
∫

D

max
t
‖∇x f (x, t)‖ dx and

∥∥∥
∑

t

‖ψ(., t)‖
∥∥∥∞≤1.

For any ε > 0, let us consider φ fulfilling φ(., t) ∈ C∞c (D,Rd),
∥∥∥

∑
t ‖φ(., t)‖

∥∥∥∞ ≤
1 and

∑

t

∫

D

‖ψ(x, t)− φ(x, t)‖2dx < ε2.

An integration by parts together with Cauchy-Schwartz inequality ensure that

−
∑

t

∫

D

f (x, t)divx (φ(x, t)) dx

=
∑

t

∫

D

∇x f (x, t).φ(x, t) dx

=
∑

t

∫

D

∇x f (x, t).ψ(x, t) dx +
∑

t

∫

D

∇x f (x, t).(φ(x, t)− ψ(x, t)) dx

≥
∫

D

max
t
‖∇x f (x, t)‖ dx − ε

⎛

⎝
∑

t

∫

D

‖∇x f (x, t)‖2 dx

⎞

⎠
1/2

.

As a consequence, the supremum (6) is not smaller than
∫
D maxt ‖∇x f (x, t)‖ dx .

B. Primal-dual optimization algorithm

We describe below the primal-dual optimization algorithm we use for solving

(θ̂ , f̂ ) ∈ argmin
θ, f

{ ∑

s,t,k

[
eθs+ fst − Zstk(θs + fst )

]
+ α

∑

s

max
t

max
u∈V (s)

| fst − fut |
Dsu

}

where Dsu = 1 in (4) and Dsu = maxt | f init
st − f init

ut | for the adaptive estimator.
For a small positive h, the primal-dual optimization algorithm iterates until con-

vergence the followings steps

123



Environ Ecol Stat (2013) 20:337–352 351

1. gradient descent in θ : for each s

θs ← θs − h

⎛

⎝eθs
∑

t,k

e fst −
∑

t,k

Zstk

⎞

⎠

2. gradient descent in f : for each s and each t ∈ {2, . . . , T }

fst ← fst − h

⎛

⎝
∑

k

(
eθs e fst − Zstk

)+ α
∑

u∈V (s)

(φs(u, t)− φu(s, t))/Dsu

⎞

⎠

3. gradient ascent in φ

φs(u, t)← φs(u, t)− h α( fst − fut )/Dsu

4. projection of each φs on the unit �1-ball.

Projection on the unit �1-ball

The projection β̂ of a vector β on the unit �1 ball is computed efficiently as follows:

– Sort the coordinates of β. Write β( j) for the j-th largest coordinate.
– Set

Ĵ = argmax
J

⎧
⎨

⎩
∑

j≤J

|β( j)| − J |β(J )| ≤ 1

⎫
⎬

⎭ and λ̂ =
⎛

⎝
∑

j≤ Ĵ

|β( j)| − 1

⎞

⎠ / Ĵ

– Return β̂ with coordinates β̂ j = β j

(
1− λ̂/|β j |

)

+ .
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