Detecting areas with synchronous temporal dynamics

Christophe Giraud

December 19, 2012

This document summarizes the algorithm used when function findSyncVarRegions() is called with first argument method="convex". Reading first the article Delimiting synchronous populations from monitoring data by Giraud et al. is recommanded, since we use here the same notations.

1 Model and estimation procedure

1.1 Goal

We write $Z_{s t k}$ for the k th observations, year t, site s and $z_{s t}=\sum_{k} Z_{s t k}$. Our goal is to estimate regions R such that

$$
\begin{equation*}
Z_{s t k} \sim \operatorname{Poisson}\left(\exp \left(\theta_{s}+f\left(x_{s}, t\right)\right)\right) \quad \text { with } f(x, t) \approx \sum_{R} \rho_{R}(t) \mathbf{1}_{x \in R} \tag{1}
\end{equation*}
$$

In other words, we try to estimate f with the a priori that

- for each year t the map $x \rightarrow f(x, t)$ is piecewise constant
- the boundary of the regions where $x \rightarrow f(x, t)$ is constant are the same for all year t.

The main difficulty is to detect the regions R.

1.2 Estimation procedure

Let G be a graph and write $V(s)$ for the set of the neighbors of s in G. The estimators $\widehat{\theta}$ and \widehat{f} are defined as minimizers of

$$
\mathcal{L}(\theta, f)+\alpha \operatorname{pen}(f):=\sum_{s, t}\left[e^{\theta_{s}+f_{s t}}-z_{s t}\left(\theta_{s}+f_{s t}\right)\right]+\alpha \sum_{\substack{G \\ s \sim u}}\left\|f_{s .}-f_{u .}\right\| / D_{s u}
$$

with boundary conditions: $f_{s 1}=0$ for all s. We typically choose $D_{s u}=1 /|V(s)|+1 /|V(u)|$.

2 Optimization algorithm

The following quantity is to be minimized

$$
\mathcal{L}(\theta, f)+\alpha \operatorname{pen}(f):=\sum_{s, t}\left[e^{\theta_{s}+f_{s t}}-z_{s t}\left(\theta_{s}+f_{s t}\right)\right]+\alpha \sum_{\substack{G \\ s \sim u}}\left\|f_{s .}-f_{u .}\right\| / D_{s u}
$$

with boundary conditions: $f_{s 1}=0$ for all s. This last expression can be rewritten into

$$
\mathcal{L}(\theta, f)+\alpha \operatorname{pen}(f)=\sum_{s, t}\left[e^{\theta_{s}+f_{s t}}-z_{s t}\left(\theta_{s}+f_{s t}\right)\right]+\alpha \sum_{\substack{G \\ \sim}} \max _{s u}\left\langle\phi_{s u}, f_{s .}-f_{u .}\right\rangle / D_{s u}
$$

with $\phi_{s u} \in \mathbf{R}^{T}$.

Let us introduce

$$
F(\theta, f, \phi)=\sum_{s, t}\left[e^{\theta_{s}+f_{s t}}-z_{s t}\left(\theta_{s}+f_{s t}\right)\right]+\alpha \sum_{s<u} \mathbf{1}_{s \sim u}^{G}\left\langle\phi_{s u}, f_{s .}-f_{u .}\right\rangle / D_{s u}
$$

We can reformulate the quantity to be optimized using F as follows.

$$
\mathcal{L}(\theta, f)+\alpha \operatorname{pen}(f)=\max _{\max _{s<u}\left\|\phi_{s u}\right\| \leq 1} F(\theta, f, \phi)
$$

The penalized log-likelihood can now be minimized with the following steps.

Application

Iterate until convergence:

1. gradient descent in θ : $\theta \leftarrow \theta-h \nabla_{\theta} F$
2. gradient descent in f with condition $f[, 1]=0$ $f[,-1] \leftarrow f[,-1]-h^{\prime} \nabla_{f[,-1]} F$
3. gradient ascent in ϕ $\phi_{s u} \leftarrow \phi_{s u}+h^{\prime \prime} \nabla_{\phi_{s u}} F$
4. $\phi_{s u} \leftarrow \phi_{s u} / \max \left(1,\left\|\phi_{s u}\right\|\right)$
$\operatorname{Return}(\theta, f)$
