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Industrial motivation

» Smartgrid & Smart meters : time real
information

> Lot of data of different nature

» Many problems : transfer protocol,
security, privacy, ...

» The French touch : 35M Linky
smartmeter

What can we do with all these data?



Electricity demand data

Some salient features
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FD as slices of a continuous process [Bosq, (1990)]
The prediction problem

» Suppose one observes a square integrable continuous-time stochastic
process X = (X(t),t € R) over the interval [0, T], T > 0;

» We want to predict X all over the segment [T, T +6],6 >0

» Divide the interval into n subintervals of equal size 6.

» Consider the functional-valued discrete time stochastic process
Z = (Zk,k € N), where N ={1,2,...}, defined by

Zi(t) = X(t + (k — 1)d)
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If X contents a §—seasonal component, Z is particularly fruitful.



Long term objective

Totalité de clients
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» Groups can express tariffs, geographical dispersion, client class ...

» IDEA : Use a clustering algorithm to learn groups of customer
structure

» Aim : Set up a classical clustering algorithm to run in parallel
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Aim

Segmentation of X may not suffices to
render reasonable the stationary
hypothesis.

If a grouping effect exists, we may
considered stationary within each
group.

Conditionally on the grouping,
functional time series prediction
methods can be applied.

We propose a clustering procedure that
discover the groups from a bunch of
curves.

We use wavelet transforms to take into
account the fact that curves may present
non stationary patters.

Two strategies to cluster
functional time series :

1. Feature extraction
(summary measures of
the curves).

2. Direct similarity between
curves.



Wavelets to cope with FD
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Discrete Wavelet Transform
If z € L5([0, 1]) we can write it as
2001 oo 2—1
2(t) =D b k() + DY diathix(t),
k=0 J=jo k=0

where ¢ =< g, ¢jk >, djx =< g,pjk > are the scale coefficients and
wavelet coefficients respectively, and the functions ¢ et ¢ are associated
to a orthogonal MRA of Ly([0, 1]).



Energy decomposition of the DWT

» Energy conservation of the signal

J-12-1 J—1
= 2
IzlE ~ 12313 = o+ D Y dik=co0+ Y lldjli3-
j=0 k=0 j=0
» Foreachj=0,1,...,J—1, we compute the absolute and relative

contribution representations by

cont; = ||dj||? and rel; = M
%/—J’ ’ Zj HdJH2
| ——

» They quantify the relative importance of the scales to the global
dynamic.

» RC normalizes the energy of each signal to 1.



Schema of procedure
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0. Data preprocessing. Approximate sample paths of zi(t), ..., za(t)

1. Feature extraction. Compute either of the energetic components using absolute
contribution (AC) or relative contribution (RC).

2. Feature selection. Screen irrelevant variables. [steinley & Brusco ('06)]

3. Determine the number of clusters. Detecting significant jumps in the transformed
distortion curve. [Sugar & James ('03)]

4. Clustering. Obtain the K clusters using PAM algorithm.

1. Antoniadis, X. Brossat, J. Cugliari et J.-M. Poggi (2013), Clustering Functional
Data Using Wavelets, IJWMIP, 11(1), 35-64
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Part|t|on|ng ArOU nd MedOIdS (PAM) [Kaufman et Rousseeuw (1987)]

Partition the n points R9-scatter into K clusters

v

v

Optimization problem :

n

D)= min 3 min [xi—ml,

ml,“.,mkERd J=1,...,

i=1 ’

| .|| can be any norm. Here we choose to use

with x = (x1,...,Xn),
the euclidean norm.

Robust version of k-means

v

Computational burden : medians instead of means

v

Several heuristics allow to reduce the computation time.

v



Parallelization with MPI

» Easy to use library routines allowing to write ‘
algorithms in parallel

» Available on several languages

%

» We use the master-slave mode

The outline of code :
1. The master process splits the problem in tasks over the data set and
sends it to the workers ;

2. Each worker reduces the functional nature of the data using the
DWT, applies the clustering and returns the centers;

3. The master recuperates and clusters the centers into K meta
centers.

The source code is open and will be available to download from github.

1. B. Auder & J. Cugliari. Parallélisation de |'algorithme des k-médoides. Application
au clustering de courbes. (2014, submitted)


https://github.com/
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Application | : Starlight curves

» Data from UCR Time Series Classification/Clustering
» 1000 curves learning set + 8236 validation set (d = 1024)
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Distortion Internal External

Training (sequential) 1.31e4 0.79 0.77
Training (parallel) 1.40e4 0.79 0.68
Test (sequential) 1.09e5 0.78 0.76
Test (parallel) 1.15e5 0.78 0.69




Application Il : EDF data
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FIGURE: French electricity power demand on autumn (top left), winter (bottom
left), spring (top right) and summer (bottom right).

Feature extraction :

» The significant scales for revealing the cluster structure are independent of the
possible number of clusters.

» Significant scales are associated to mid-frequencies.

» The retained scales parametrize the represented cycles of 1.5, 3 and 6 hours
(AQ).
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FIGURE: Number of clusters by feature extraction of the AC (top). From left to
right : distortion curve, transformed distortion curve and first difference on the
transformed distortion curve.
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FIGURE: Curves membership of the clustering using AC based dissimilarity (a)
and the corresponding calendar positioning (b).



Application Il : Electricity Smart Meter CBT (ISSDA)

4621 Irish households smart meter data
About 25K discretization points
We test with K = 3 or 5 classes

vV v v v

We compare sequential and parallel versions

Distortion  Internal adequacy

3 clusters sequential 1.90e7 0.90
3 clusters parallel 2.15e7 0.90
5 clusters sequential 1.61e7 0.89
5 clusters parallel 1.84e7 0.89

1. Irish Social Science Data Archive, http://wuw.ucd.ie/issda/data/


http://www.ucd.ie/issda/data/
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Conclusion

» Identification of customers groups from smartmeter data

» Wavelets allow to capture the functional nature of the data
» Clustering algorithm upscale envisaged for millions of curves
>

Divide-and-Conquer approach thanks to MPI library

Further work
» Go back to the prediction task

> Apply the algorithm over many hundreds of processors

» Connect the clustering method with a prediction model
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