X-Git-Url: https://git.auder.net/?p=morpheus.git;a=blobdiff_plain;f=pkg%2FR%2FoptimParams.R;h=c050e630ae7f381e1765d17c3bc530083251d6a5;hp=505b6651b76ebfcf94d441e6864a136ecbf109dd;hb=ab35f6102896a49e86e853262c0650faa2931638;hpb=6dd5c2acccd10635449230faa824b7e8906911bf diff --git a/pkg/R/optimParams.R b/pkg/R/optimParams.R index 505b665..c050e63 100644 --- a/pkg/R/optimParams.R +++ b/pkg/R/optimParams.R @@ -1,37 +1,47 @@ +#' optimParams +#' #' Wrapper function for OptimParams class #' -#' @param K Number of populations. -#' @param link The link type, 'logit' or 'probit'. +#' @name optimParams +#' #' @param X Data matrix of covariables #' @param Y Output as a binary vector +#' @param K Number of populations. +#' @param link The link type, 'logit' or 'probit'. +#' @param M the empirical cross-moments between X and Y (optional) +#' @param nc Number of cores (default: 0 to use all) #' -#' @return An object 'op' of class OptimParams, initialized so that \code{op$run(x0)} -#' outputs the list of optimized parameters +#' @return An object 'op' of class OptimParams, initialized so that +#' \code{op$run(θ0)} outputs the list of optimized parameters #' \itemize{ #' \item p: proportions, size K #' \item β: regression matrix, size dxK #' \item b: intercepts, size K #' } -#' θ0 is a vector containing respectively the K-1 first elements of p, then β by -#' columns, and finally b: \code{θ0 = c(p[1:(K-1)],as.double(β),b)}. +#' θ0 is a list containing the initial parameters. Only β is required +#' (p would be set to (1/K,...,1/K) and b to (0,...0)). #' #' @seealso \code{multiRun} to estimate statistics based on β, and #' \code{generateSampleIO} for I/O random generation. #' #' @examples #' # Optimize parameters from estimated μ -#' io = generateSampleIO(10000, 1/2, matrix(c(1,-2,3,1),ncol=2), c(0,0), "logit") -#' μ = computeMu(io$X, io$Y, list(K=2)) +#' io <- generateSampleIO(100, +#' 1/2, matrix(c(1,-2,3,1),ncol=2), c(0,0), "logit") +#' μ <- computeMu(io$X, io$Y, list(K=2)) #' o <- optimParams(io$X, io$Y, 2, "logit") +#' \donttest{ #' θ0 <- list(p=1/2, β=μ, b=c(0,0)) #' par0 <- o$run(θ0) #' # Compare with another starting point #' θ1 <- list(p=1/2, β=2*μ, b=c(0,0)) #' par1 <- o$run(θ1) +#' # Look at the function values at par0 and par1: #' o$f( o$linArgs(par0) ) -#' o$f( o$linArgs(par1) ) +#' o$f( o$linArgs(par1) )} +#' #' @export -optimParams <- function(X, Y, K, link=c("logit","probit")) +optimParams <- function(X, Y, K, link=c("logit","probit"), M=NULL, nc=0) { # Check arguments if (!is.matrix(X) || any(is.na(X))) @@ -39,26 +49,41 @@ optimParams <- function(X, Y, K, link=c("logit","probit")) if (!is.numeric(Y) || any(is.na(Y)) || any(Y!=0 & Y!=1)) stop("Y: binary vector with 0 and 1 only") link <- match.arg(link) - if (!is.numeric(K) || K!=floor(K) || K < 2) - stop("K: integer >= 2") + if (!is.numeric(K) || K!=floor(K) || K < 2 || K > ncol(X)) + stop("K: integer >= 2, <= d") + + if (is.null(M)) + { + # Precompute empirical moments + Mtmp <- computeMoments(X, Y) + M1 <- as.double(Mtmp[[1]]) + M2 <- as.double(Mtmp[[2]]) + M3 <- as.double(Mtmp[[3]]) + M <- c(M1, M2, M3) + } + else + M <- c(M[[1]], M[[2]], M[[3]]) # Build and return optimization algorithm object methods::new("OptimParams", "li"=link, "X"=X, - "Y"=as.integer(Y), "K"=as.integer(K)) + "Y"=as.integer(Y), "K"=as.integer(K), "Mhat"=as.double(M), "nc"=as.integer(nc)) } -#' Encapsulated optimization for p (proportions), β and b (regression parameters) -#' -#' Optimize the parameters of a mixture of logistic regressions model, possibly using -#' \code{mu <- computeMu(...)} as a partial starting point. -#' -#' @field li Link function, 'logit' or 'probit' -#' @field X Data matrix of covariables -#' @field Y Output as a binary vector -#' @field K Number of populations -#' @field d Number of dimensions -#' @field W Weights matrix (iteratively refined) -#' +# Encapsulated optimization for p (proportions), β and b (regression parameters) +# +# Optimize the parameters of a mixture of logistic regressions model, possibly using +# \code{mu <- computeMu(...)} as a partial starting point. +# +# @field li Link function, 'logit' or 'probit' +# @field X Data matrix of covariables +# @field Y Output as a binary vector +# @field Mhat Vector of empirical moments +# @field K Number of populations +# @field n Number of sample points +# @field d Number of dimensions +# @field nc Number of cores (OpenMP //) +# @field W Weights matrix (initialized at identity) +# setRefClass( Class = "OptimParams", @@ -72,6 +97,7 @@ setRefClass( K = "integer", n = "integer", d = "integer", + nc = "integer", # Weights matrix (generalized least square) W = "matrix" ), @@ -82,19 +108,15 @@ setRefClass( "Check args and initialize K, d, W" callSuper(...) - if (!hasArg("X") || !hasArg("Y") || !hasArg("K") || !hasArg("li")) + if (!hasArg("X") || !hasArg("Y") || !hasArg("K") + || !hasArg("li") || !hasArg("Mhat") || !hasArg("nc")) + { stop("Missing arguments") - - # Precompute empirical moments - M <- computeMoments(X, Y) - M1 <- as.double(M[[1]]) - M2 <- as.double(M[[2]]) - M3 <- as.double(M[[3]]) - Mhat <<- c(M1, M2, M3) + } n <<- nrow(X) - d <<- length(M1) - W <<- diag(d+d^2+d^3) #initialize at W = Identity + d <<- ncol(X) + # W will be initialized when calling run() }, expArgs = function(v) @@ -104,7 +126,7 @@ setRefClass( list( # p: dimension K-1, need to be completed "p" = c(v[1:(K-1)], 1-sum(v[1:(K-1)])), - "β" = matrix(v[K:(K+d*K-1)], ncol=K), + "β" = t(matrix(v[K:(K+d*K-1)], ncol=d)), "b" = v[(K+d*K):(K+(d+1)*K-1)]) }, @@ -112,22 +134,28 @@ setRefClass( { "Linearize vectors+matrices from list L into a vector" - c(L$p[1:(K-1)], as.double(L$β), L$b) + # β linearized row by row, to match derivatives order + c(L$p[1:(K-1)], as.double(t(L$β)), L$b) }, + # TODO: relocate computeW in utils.R computeW = function(θ) { - #require(MASS) + "Compute the weights matrix from a parameters list" + + require(MASS) dd <- d + d^2 + d^3 - W <<- MASS::ginv( matrix( .C("Compute_Omega", - X=as.double(X), Y=Y, M=Moments(θ), pn=as.integer(n), pd=as.integer(d), - W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) ) - NULL #avoid returning W + M <- Moments(θ) + Omega <- matrix( .C("Compute_Omega", + X=as.double(X), Y=as.integer(Y), M=as.double(M), + pnc=as.integer(nc), pn=as.integer(n), pd=as.integer(d), + W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) + MASS::ginv(Omega) }, Moments = function(θ) { - "Vector of moments, of size d+d^2+d^3" + "Compute the vector of theoretical moments (size d+d^2+d^3)" p <- θ$p β <- θ$β @@ -146,7 +174,7 @@ setRefClass( f = function(θ) { - "Product t(hat_Mi - Mi) W (hat_Mi - Mi) with Mi(theta)" + "Function to minimize: t(hat_Mi - Mi(θ)) . W . (hat_Mi - Mi(θ))" L <- expArgs(θ) A <- as.matrix(Mhat - Moments(L)) @@ -155,15 +183,15 @@ setRefClass( grad_f = function(θ) { - "Gradient of f, dimension (K-1) + d*K + K = (d+2)*K - 1" + "Gradient of f: vector of size (K-1) + d*K + K = (d+2)*K - 1" L <- expArgs(θ) - -2 * t(grad_M(L)) %*% W %*% as.matrix((Mhat - Moments(L))) + -2 * t(grad_M(L)) %*% W %*% as.matrix(Mhat - Moments(L)) }, grad_M = function(θ) { - "Gradient of the vector of moments, size (dim=)d+d^2+d^3 x K-1+K+d*K" + "Gradient of the moments vector: matrix of size d+d^2+d^3 x K-1+K+d*K" p <- θ$p β <- θ$β @@ -229,7 +257,8 @@ setRefClass( res }, - run = function(θ0) + # userW allows to bypass the W optimization by giving a W matrix + run = function(θ0, userW=NULL) { "Run optimization from θ0 with solver..." @@ -237,32 +266,40 @@ setRefClass( stop("θ0: list") if (is.null(θ0$β)) stop("At least θ0$β must be provided") - if (!is.matrix(θ0$β) || any(is.na(θ0$β)) || ncol(θ0$β) != K) - stop("θ0$β: matrix, no NA, ncol == K") + if (!is.matrix(θ0$β) || any(is.na(θ0$β)) + || nrow(θ0$β) != d || ncol(θ0$β) != K) + { + stop("θ0$β: matrix, no NA, nrow = d, ncol = K") + } if (is.null(θ0$p)) θ0$p = rep(1/K, K-1) - else if (length(θ0$p) != K-1 || sum(θ0$p) > 1) - stop("θ0$p should contain positive integers and sum to < 1") - # Next test = heuristic to detect missing b (when matrix is called "beta") - if (is.null(θ0$b) || all(θ0$b == θ0$β)) + else if (!is.numeric(θ0$p) || length(θ0$p) != K-1 + || any(is.na(θ0$p)) || sum(θ0$p) > 1) + { + stop("θ0$p: length K-1, no NA, positive integers, sum to <= 1") + } + # NOTE: [["b"]] instead of $b because $b would match $beta (in pkg-cran) + if (is.null(θ0[["b"]])) θ0$b = rep(0, K) - else if (any(is.na(θ0$b))) - stop("θ0$b cannot have missing values") + else if (!is.numeric(θ0$b) || length(θ0$b) != K || any(is.na(θ0$b))) + stop("θ0$b: length K, no NA") - # TODO: stopping condition? N iterations? Delta <= epsilon ? - for (loop in 1:10) + # (Re)Set W to identity, to allow several run from the same object + W <<- if (is.null(userW)) diag(d+d^2+d^3) else userW + + # NOTE: loopMax = 3 seems to not improve the final results. + loopMax <- ifelse(is.null(userW), 2, 1) + x_init <- linArgs(θ0) + for (loop in 1:loopMax) { - op_res = constrOptim( linArgs(θ0), .self$f, .self$grad_f, + op_res <- constrOptim( x_init, .self$f, .self$grad_f, ui=cbind( rbind( rep(-1,K-1), diag(K-1) ), matrix(0, nrow=K, ncol=(d+1)*K) ), ci=c(-1,rep(0,K-1)) ) - - computeW(expArgs(op_res$par)) - # debug: - #print(W) - print(op_res$value) - print(expArgs(op_res$par)) + if (loop < loopMax) #avoid computing an extra W + W <<- computeW(expArgs(op_res$par)) + #x_init <- op_res$par #degrades performances (TODO: why?) } expArgs(op_res$par)