#' optimParams #' #' Wrapper function for OptimParams class #' #' @name optimParams #' #' @param X Data matrix of covariables #' @param Y Output as a binary vector #' @param K Number of populations. #' @param link The link type, 'logit' or 'probit'. #' @param M the empirical cross-moments between X and Y (optional) #' @param nc Number of cores (default: 0 to use all) #' #' @return An object 'op' of class OptimParams, initialized so that #' \code{op$run(θ0)} outputs the list of optimized parameters #' \itemize{ #' \item p: proportions, size K #' \item β: regression matrix, size dxK #' \item b: intercepts, size K #' } #' θ0 is a list containing the initial parameters. Only β is required #' (p would be set to (1/K,...,1/K) and b to (0,...0)). #' #' @seealso \code{multiRun} to estimate statistics based on β, and #' \code{generateSampleIO} for I/O random generation. #' #' @examples #' # Optimize parameters from estimated μ #' io <- generateSampleIO(100, #' 1/2, matrix(c(1,-2,3,1),ncol=2), c(0,0), "logit") #' μ <- computeMu(io$X, io$Y, list(K=2)) #' o <- optimParams(io$X, io$Y, 2, "logit") #' \dontrun{ #' θ0 <- list(p=1/2, β=μ, b=c(0,0)) #' par0 <- o$run(θ0) #' # Compare with another starting point #' θ1 <- list(p=1/2, β=2*μ, b=c(0,0)) #' par1 <- o$run(θ1) #' # Look at the function values at par0 and par1: #' o$f( o$linArgs(par0) ) #' o$f( o$linArgs(par1) )} #' #' @export optimParams <- function(X, Y, K, link=c("logit","probit"), M=NULL, nc=0) { # Check arguments if (!is.matrix(X) || any(is.na(X))) stop("X: numeric matrix, no NAs") if (!is.numeric(Y) || any(is.na(Y)) || any(Y!=0 & Y!=1)) stop("Y: binary vector with 0 and 1 only") link <- match.arg(link) if (!is.numeric(K) || K!=floor(K) || K < 2 || K > ncol(X)) stop("K: integer >= 2, <= d") if (is.null(M)) { # Precompute empirical moments Mtmp <- computeMoments(X, Y) M1 <- as.double(Mtmp[[1]]) M2 <- as.double(Mtmp[[2]]) M3 <- as.double(Mtmp[[3]]) M <- c(M1, M2, M3) } else M <- c(M[[1]], M[[2]], M[[3]]) # Build and return optimization algorithm object methods::new("OptimParams", "li"=link, "X"=X, "Y"=as.integer(Y), "K"=as.integer(K), "Mhat"=as.double(M), "nc"=as.integer(nc)) } # Encapsulated optimization for p (proportions), β and b (regression parameters) # # Optimize the parameters of a mixture of logistic regressions model, possibly using # \code{mu <- computeMu(...)} as a partial starting point. # # @field li Link function, 'logit' or 'probit' # @field X Data matrix of covariables # @field Y Output as a binary vector # @field Mhat Vector of empirical moments # @field K Number of populations # @field n Number of sample points # @field d Number of dimensions # @field nc Number of cores (OpenMP //) # @field W Weights matrix (initialized at identity) # setRefClass( Class = "OptimParams", fields = list( # Inputs li = "character", #link function X = "matrix", Y = "numeric", Mhat = "numeric", #vector of empirical moments # Dimensions K = "integer", n = "integer", d = "integer", nc = "integer", # Weights matrix (generalized least square) W = "matrix" ), methods = list( initialize = function(...) { "Check args and initialize K, d, W" callSuper(...) if (!hasArg("X") || !hasArg("Y") || !hasArg("K") || !hasArg("li") || !hasArg("Mhat") || !hasArg("nc")) { stop("Missing arguments") } n <<- nrow(X) d <<- ncol(X) # W will be initialized when calling run() }, expArgs = function(v) { "Expand individual arguments from vector v into a list" list( # p: dimension K-1, need to be completed "p" = c(v[1:(K-1)], 1-sum(v[1:(K-1)])), "β" = t(matrix(v[K:(K+d*K-1)], ncol=d)), "b" = v[(K+d*K):(K+(d+1)*K-1)]) }, linArgs = function(L) { "Linearize vectors+matrices from list L into a vector" # β linearized row by row, to match derivatives order c(L$p[1:(K-1)], as.double(t(L$β)), L$b) }, # TODO: relocate computeW in utils.R computeW = function(θ) { "Compute the weights matrix from a parameters list" require(MASS) dd <- d + d^2 + d^3 M <- Moments(θ) Omega <- matrix( .C("Compute_Omega", X=as.double(X), Y=as.integer(Y), M=as.double(M), pnc=as.integer(nc), pn=as.integer(n), pd=as.integer(d), W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) MASS::ginv(Omega) }, Moments = function(θ) { "Compute the vector of theoretical moments (size d+d^2+d^3)" p <- θ$p β <- θ$β λ <- sqrt(colSums(β^2)) b <- θ$b # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1 β2 <- apply(β, 2, function(col) col %o% col) β3 <- apply(β, 2, function(col) col %o% col %o% col) c( β %*% (p * .G(li,1,λ,b)), β2 %*% (p * .G(li,2,λ,b)), β3 %*% (p * .G(li,3,λ,b))) }, f = function(θ) { "Function to minimize: t(hat_Mi - Mi(θ)) . W . (hat_Mi - Mi(θ))" L <- expArgs(θ) A <- as.matrix(Mhat - Moments(L)) t(A) %*% W %*% A }, grad_f = function(θ) { "Gradient of f: vector of size (K-1) + d*K + K = (d+2)*K - 1" L <- expArgs(θ) -2 * t(grad_M(L)) %*% W %*% as.matrix(Mhat - Moments(L)) }, grad_M = function(θ) { "Gradient of the moments vector: matrix of size d+d^2+d^3 x K-1+K+d*K" p <- θ$p β <- θ$β λ <- sqrt(colSums(β^2)) μ <- sweep(β, 2, λ, '/') b <- θ$b res <- matrix(nrow=nrow(W), ncol=0) # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1 β2 <- apply(β, 2, function(col) col %o% col) β3 <- apply(β, 2, function(col) col %o% col %o% col) # Some precomputations G1 = .G(li,1,λ,b) G2 = .G(li,2,λ,b) G3 = .G(li,3,λ,b) G4 = .G(li,4,λ,b) G5 = .G(li,5,λ,b) # Gradient on p: K-1 columns, dim rows km1 = 1:(K-1) res <- cbind(res, rbind( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K], sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K], sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] )) for (i in 1:d) { # i determines the derivated matrix dβ[2,3] dβ_left <- sweep(β, 2, p * G3 * β[i,], '*') dβ_right <- matrix(0, nrow=d, ncol=K) block <- i dβ_right[block,] <- dβ_right[block,] + 1 dβ <- dβ_left + sweep(dβ_right, 2, p * G1, '*') dβ2_left <- sweep(β2, 2, p * G4 * β[i,], '*') dβ2_right <- do.call( rbind, lapply(1:d, function(j) { sweep(dβ_right, 2, β[j,], '*') }) ) block <- ((i-1)*d+1):(i*d) dβ2_right[block,] <- dβ2_right[block,] + β dβ2 <- dβ2_left + sweep(dβ2_right, 2, p * G2, '*') dβ3_left <- sweep(β3, 2, p * G5 * β[i,], '*') dβ3_right <- do.call( rbind, lapply(1:d, function(j) { sweep(dβ2_right, 2, β[j,], '*') }) ) block <- ((i-1)*d*d+1):(i*d*d) dβ3_right[block,] <- dβ3_right[block,] + β2 dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*') res <- cbind(res, rbind(dβ, dβ2, dβ3)) } # Gradient on b res <- cbind(res, rbind( sweep(β, 2, p * G2, '*'), sweep(β2, 2, p * G3, '*'), sweep(β3, 2, p * G4, '*') )) res }, # userW allows to bypass the W optimization by giving a W matrix run = function(θ0, userW=NULL) { "Run optimization from θ0 with solver..." if (!is.list(θ0)) stop("θ0: list") if (is.null(θ0$β)) stop("At least θ0$β must be provided") if (!is.matrix(θ0$β) || any(is.na(θ0$β)) || nrow(θ0$β) != d || ncol(θ0$β) != K) { stop("θ0$β: matrix, no NA, nrow = d, ncol = K") } if (is.null(θ0$p)) θ0$p = rep(1/K, K-1) else if (!is.numeric(θ0$p) || length(θ0$p) != K-1 || any(is.na(θ0$p)) || sum(θ0$p) > 1) { stop("θ0$p: length K-1, no NA, positive integers, sum to <= 1") } # NOTE: [["b"]] instead of $b because $b would match $beta (in pkg-cran) if (is.null(θ0[["b"]])) θ0$b = rep(0, K) else if (!is.numeric(θ0$b) || length(θ0$b) != K || any(is.na(θ0$b))) stop("θ0$b: length K, no NA") # (Re)Set W to identity, to allow several run from the same object W <<- if (is.null(userW)) diag(d+d^2+d^3) else userW # NOTE: loopMax = 3 seems to not improve the final results. loopMax <- ifelse(is.null(userW), 2, 1) x_init <- linArgs(θ0) for (loop in 1:loopMax) { op_res <- constrOptim( x_init, .self$f, .self$grad_f, ui=cbind( rbind( rep(-1,K-1), diag(K-1) ), matrix(0, nrow=K, ncol=(d+1)*K) ), ci=c(-1,rep(0,K-1)) ) if (loop < loopMax) #avoid computing an extra W W <<- computeW(expArgs(op_res$par)) #x_init <- op_res$par #degrades performances (TODO: why?) } expArgs(op_res$par) } ) ) # Compute vectorial E[g^{(order)}(<β,x> + b)] with x~N(0,Id) (integral in R^d) # = E[g^{(order)}(z)] with z~N(b,diag(λ)) # by numerically evaluating the integral. # # @param link Link, 'logit' or 'probit' # @param order Order of derivative # @param λ Norm of columns of β # @param b Intercept # .G <- function(link, order, λ, b) { # NOTE: weird "integral divergent" error on inputs: # link="probit"; order=2; λ=c(531.8099,586.8893,523.5816); b=c(-118.512674,-3.488020,2.109969) # Switch to pracma package for that (but it seems slow...) sapply( seq_along(λ), function(k) { res <- NULL tryCatch({ # Fast code, may fail: res <- stats::integrate( function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi), lower=-Inf, upper=Inf )$value }, error = function(e) { # Robust slow code, no fails observed: sink("/dev/null") #pracma package has some useless printed outputs... res <- pracma::integral( function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi), xmin=-Inf, xmax=Inf, method="Kronrod") sink() }) res }) } # Derivatives list: g^(k)(x) for links 'logit' and 'probit' # .deriv <- list( "probit"=list( # 'probit' derivatives list; # NOTE: exact values for the integral E[g^(k)(λz+b)] could be computed function(x) exp(-x^2/2)/(sqrt(2*pi)), #g' function(x) exp(-x^2/2)/(sqrt(2*pi)) * -x, #g'' function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^2 - 1), #g^(3) function(x) exp(-x^2/2)/(sqrt(2*pi)) * (-x^3 + 3*x), #g^(4) function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^4 - 6*x^2 + 3) #g^(5) ), "logit"=list( # Sigmoid derivatives list, obtained with http://www.derivative-calculator.net/ # @seealso http://www.ece.uc.edu/~aminai/papers/minai_sigmoids_NN93.pdf function(x) {e=exp(x); .zin(e /(e+1)^2)}, #g' function(x) {e=exp(x); .zin(e*(-e + 1) /(e+1)^3)}, #g'' function(x) {e=exp(x); .zin(e*( e^2 - 4*e + 1) /(e+1)^4)}, #g^(3) function(x) {e=exp(x); .zin(e*(-e^3 + 11*e^2 - 11*e + 1) /(e+1)^5)}, #g^(4) function(x) {e=exp(x); .zin(e*( e^4 - 26*e^3 + 66*e^2 - 26*e + 1)/(e+1)^6)} #g^(5) ) ) # Utility for integration: "[return] zero if [argument is] NaN" (Inf / Inf divs) # # @param x Ratio of polynoms of exponentials, as in .S[[i]] # .zin <- function(x) { x[is.nan(x)] <- 0. x }