## File : 00_plots-energycon.r ## Description : Using the full data matrix, we extract handy features to ## cluster. rm(list = ls()) library(Rwave) # CWT #library(cluster) # pam #library(flexclust) # kcca source("aux.r") # auxiliary clustering functions source("sowas-superseded.r") # auxiliary CWT functions source('http://eric.univ-lyon2.fr/~jcugliari/codes/functional-clustering.r') setwd("~/recherche/03_projects/2014_EDF-Orsay-Lyon2/codes/") ## 1. Read auxiliar data files #### #identifiants <- read.table("identifs.txt")[ ,1] dates0 <- read.table("datesall.txt")[, 1] dates <- dates0[grep("2009", dates0)] #rm(dates0) #n <- length(identifiants) p <- length(dates) #blocks <- c(rep(6500, 3), 5511) # table( substr(dates, 11, 15) ) # Sunlight time saving produces an # unbalanced number of time points # per time stepa across the year ## 2. Process the large file #### # if(exists("con")) close(con) # con <- file("~/tmp/2009_full.txt") # Establish a connection to the file # open(con, "r") # Open the connection # # nb <- 4 # actual <- readLines(con = con, n = nb )[-3] # auxmat <- matrix(unlist(strsplit(actual, " ")), ncol = p + 1, byrow = TRUE) # rm(actual) # # datamat <- t(apply(auxmat[, -1], 1, as.numeric)) # rownames(datamat) <- substr(auxmat[, 1], 2, 7) # rm(auxmat) # # datamat <- datamat[, 1:(48 * 14)] # p <- ncol(datamat) # # auxDWT <- t(apply(datamat, 1, toDWT)) # matcontrib <- t(apply(auxDWT, 1, contrib)) # rm(auxDWT) # # close(con); rm(con) # close connection to the file load("~/data/Irlande/Data_CER_clean/SME.RData") smp <- c(4, 79, 126) datamat <- t(SME[1:(48 * 7), smp]) p <- ncol(datamat) auxDWT <- t(apply(datamat, 1, toDWT)) matcontrib <- t(apply(auxDWT, 1, contrib)) rm(auxDWT) matplot(t(datamat), type = "l", lty = 1, col = 1:8, lwd = 2) pdf("~/courbes.pdf") #par(mai = c(1, 1, 0.8, 0.6), mfcol = c(4, 2), cex = 2) for(courbe in 1:ncol(SME)) { plot(SME[1:(48 * 7), courbe], main = paste(courbe), xlab = "", ylab = "", type = "l") } dev.off() ## Plots for ENERGYCON full article #### op <- par() col <- c("grey", "black", "black") ## Curves pdf('~/curves.pdf', width = 12) par(mai = c(1.3, 1.3, 0.1, 0.1), cex = 1.2) matplot(t(datamat), type = "l", lty = c(1, 1, 2), lwd = 2, col = col, # c(1, 2, 4), ylab = "Load", xlab = "Time (1/2 hours)") legend("top", c("Cust. A", "Cust. B", "Cust. C"), col = col, lty = c(1, 1, 2), ncol = 3, lwd = 2) # matplot(scale(t(datamat), scale = F), # type = "l", lty = 1, col = c(1, 2, 4), lwd = 2, # ylab = "Load", xlab = "Time (1/2 hours)") dev.off() normi <- function(x) x / max(x) normi2 <- function(x) (x - min(x)) / (max(x) - min(x)) matplot(apply(datamat, 1, normi2), type = "l", lty = 1, col = c(1, 2, 4), lwd = 2, ylab = "Load", xlab = "Time (1/2 hours)") cont_dist <- dist(scale(matcontrib)) cont_dist <- cont_dist / max(cont_dist) delta <- p n <- nrow(datamat) ## _.a CWT -- Filtering the lowest freqs (>6m) #### nvoice <- 4 # noctave4 = 2^13 = 8192 half hours ~ 180 days noctave4 <- adjust.noctave(N = delta, dt = 1, s0 = 2, tw = 0, noctave = 10) # 10 here represent 2^10 = 1024 half-hours ~ 2 weeks day scalevector4 <- 2^(4:(noctave4 * nvoice) / nvoice) * 2 lscvect4 <- length(scalevector4) lscvect <- lscvect4 # i should clean my code: werFam demands a lscvect Xcwt4 <- toCWT(datamat, noctave = noctave4, dt = 1, scalevector = scalevector4, lt = delta, smooth = FALSE, nvoice = nvoice) # observations node with CWT Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length(c(Xcwt4[, ,1]))) for(i in 1:n) Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) ) rm(conso, Xcwt4); gc() lscvect <- 41 ## very very nasty: toCWT changes scalevector to 41 (instead of ## the original length--37--) ## _.b WER^2 distances ######## Xwer_dist <- matrix(0.0, n, n) for(i in 1:(n - 1)){ mat1 <- vect2mat(Xcwt2[i,]) for(j in (i + 1):n){ mat2 <- vect2mat(Xcwt2[j,]) num <- Mod(mat1 * Conj(mat2)) WX <- Mod(mat1 * Conj(mat1)) WY <- Mod(mat2 * Conj(mat2)) smsmnum <- smCWT(num, scalevector = scalevector4) smsmWX <- smCWT(WX, scalevector = scalevector4) smsmWY <- smCWT(WY, scalevector = scalevector4) wer2 <- sum(colSums(smsmnum)^2) / sum( sum(colSums(smsmWX) * colSums(smsmWY)) ) Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2)) Xwer_dist[j, i] <- Xwer_dist[i, j] } } diag(Xwer_dist) <- numeric(n) Xwer_dist <- Xwer_dist / max(Xwer_dist) pdf("~/cmdscale.pdf", width = 14) #layout(matrix(1:2, 1, 2)) par(mai = c(1, 1, 0.8, 0.6), mfcol = c(1, 2), cex = 2) plot(cmdscale(cont_dist), pch = c("A", "B", "C"),#c(15, 17, 19), main = "RC based distance", #col = c(1, 2, 4), xlim = c(-1, 1), ylim = c(-1, 1), xlab = "", ylab = "", asp = 1) abline(h= 0, lwd = 2); abline(v = 0, lwd = 2); grid(lty = 1) plot(cmdscale(Xwer_dist), pch = c("A", "B", "C"),#c(15, 17, 19), main = "WER distance", #col = c(1, 2, 4), xlim = c(-1, 1), ylim = c(-1, 1), xlab = "", ylab = "", asp = 1) abline(h= 0, lwd = 2); abline(v = 0, lwd = 2); grid(lty = 1) dev.off() ## Effectives distribution #load('../res/clfit500.Rdata') pdf("~/distro500.pdf", width = 12) plot(sort(table(clfit$clustering), decreasing = TRUE), type ="s", ylab = "Effectives", xlab = "Class", lwd = 2) abline(v = 200) #dev.off()