#Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1 #(Benjamin) #à partir de là, "conso" == courbes synchrones n <- nrow(conso) delta <- ncol(conso) #17000 colonnes coeff 1, puis 17000 coeff 2... [non : dans chaque tranche du cube] #TODO: une fonction qui fait lignes 59 à 91 #cube: # Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1, # scalevector = scalevector4, # lt = delta, smooth = FALSE, # nvoice = nvoice) # observations node with CWT # # #matrix: # ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect) # #Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1])))) # # #NOTE: delta et lscvect pourraient etre gardés à part (communs) # for(i in 1:n) # Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) ) # # #rm(conso, Xcwt4); gc() # # ## _.b WER^2 distances ######## # Xwer_dist <- matrix(0.0, n, n) # for(i in 1:(n - 1)){ # mat1 <- vect2mat(Xcwt2[i,]) # for(j in (i + 1):n){ # mat2 <- vect2mat(Xcwt2[j,]) # num <- Mod(mat1 * Conj(mat2)) # WX <- Mod(mat1 * Conj(mat1)) # WY <- Mod(mat2 * Conj(mat2)) # smsmnum <- smCWT(num, scalevector = scalevector4) # smsmWX <- smCWT(WX, scalevector = scalevector4) # smsmWY <- smCWT(WY, scalevector = scalevector4) # wer2 <- sum(colSums(smsmnum)^2) / # sum( sum(colSums(smsmWX) * colSums(smsmWY)) ) # Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2)) # Xwer_dist[j, i] <- Xwer_dist[i, j] # } # } # diag(Xwer_dist) <- numeric(n) # # save(Xwer_dist, file = "../res/2009_synchros200WER.Rdata") # save(Xwer_dist, file = "../res/2009_synchros200-randomWER.Rdata") #lignes 59 à 91 "dépliées" : Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1, scalevector = scalevector4, lt = delta, smooth = FALSE, nvoice = nvoice) # observations node with CWT #matrix: ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect) Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1])))) #NOTE: delta et lscvect pourraient etre gardés à part (communs) for(i in 1:n) Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) ) #rm(conso, Xcwt4); gc() ## _.b WER^2 distances ######## Xwer_dist <- matrix(0.0, n, n) for(i in 1:(n - 1)){ mat1 <- vect2mat(Xcwt2[i,]) #NOTE: vect2mat = as.matrix ?! (dans aux.R) vect2mat <- function(vect){ vect <- as.vector(vect) matrix(vect[-(1:2)], delta, lscvect) } for(j in (i + 1):n){ mat2 <- vect2mat(Xcwt2[j,]) num <- Mod(mat1 * Conj(mat2)) WX <- Mod(mat1 * Conj(mat1)) WY <- Mod(mat2 * Conj(mat2)) smsmnum <- smCWT(num, scalevector = scalevector4) smsmWX <- smCWT(WX, scalevector = scalevector4) smsmWY <- smCWT(WY, scalevector = scalevector4) wer2 <- sum(colSums(smsmnum)^2) / sum( sum(colSums(smsmWX) * colSums(smsmWY)) ) Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2)) Xwer_dist[j, i] <- Xwer_dist[i, j] } } diag(Xwer_dist) <- numeric(n) #fonction smCWT (dans aux.R) smCWT <- function(CWT, sw= 0, tw= 0, swabs= 0, nvoice= 12, noctave= 2, s0= 2, w0= 2*pi, lt= 24, dt= 0.5, scalevector ) { # noctave <- adjust.noctave(lt, dt, s0, tw, noctave) # scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0 wsp <- Mod(CWT) smwsp <- smooth.matrix(wsp, swabs) smsmwsp <- smooth.time(smwsp, tw, dt, scalevector) smsmwsp } #dans sowas.R smooth.matrix <- function(wt,swabs){ if (swabs != 0) smwt <- t(filter(t(wt),rep(1,2*swabs+1)/(2*swabs+1))) else smwt <- wt smwt } smooth.time <- function(wt,tw,dt,scalevector){ smwt <- wt if (tw != 0){ for (i in 1:length(scalevector)){ twi <- as.integer(scalevector[i]*tw/dt) smwt[,i] <- filter(wt[,i],rep(1,2*twi+1)/(2*twi+1)) } } smwt } #et filter() est dans stats:: #cf. filters en C dans : https://svn.r-project.org/R/trunk/src/library/stats/src/filter.c