#point avec Jairo: #rentrer dans code C cwt continue Rwave #passer partie sowas à C #fct qui pour deux series (ID, medoides) renvoie distance WER (Rwave ou à moi) #transformee croisee , smoothing lissage 3 composantes , + calcul pour WER #attention : code fait pour des series temps desynchronisees ! (deltat, dt == 1,2 ...) #determiner nvoice noctave (entre octave + petit et + grand) library("Rwave") #Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1 #TODO: bout de code qui calcule les courbes synchrones après étapes 1+2 à partir des ID médoïdes #toCWT: (aux) ##NOTE: renvoie une matrice 3D toCWT <- function(X, sw= 0, tw= 0, swabs= 0, nvoice= 12, noctave= 5, s0= 2, w0= 2*pi, lt= 24, dt= 0.5, spectra = FALSE, smooth = TRUE, scaled = FALSE, scalevector) { noctave <- adjust.noctave(lt, dt, s0, tw, noctave) if(missing(scalevector)) scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0 res <- lapply(1:nrow(X), function(n) { tsX <- ts( X[n,] ) tsCent <- tsX - mean(tsX) if(scaled) tsCent <- ts(scale(tsCent)) tsCent.cwt <- cwt.ts(tsCent, s0, noctave, nvoice, w0) tsCent.cwt }) if( spectra ) res <- lapply(res, function(l) Mod(l)^2 ) if( smooth ) res <- lapply(res, smCWT, swabs = swabs, tw = tw, dt = dt, scalevector = scalevector) resArray <- array(NA, c(nrow(res[[1]]), ncol(res[[1]]), length(res))) for( l in 1:length(res) ) resArray[ , , l] <- res[[l]] resArray } #from sowas cwt.ts <- function(ts,s0,noctave=5,nvoice=10,w0=2*pi) { if (class(ts)!="ts") stop("# This function needs a time series object as input. You may construct this by using the function ts(data,start,deltat). Try '?ts' for help.\n") t=time(ts) dt=t[2]-t[1] s0unit=s0/dt*w0/(2*pi) s0log=as.integer((log2(s0unit)-1)*nvoice+1.5) if (s0log<1) { cat(paste("# s0unit = ",s0unit,"\n",sep="")) cat(paste("# s0log = ",s0log,"\n",sep="")) cat("# s0 too small for w0! \n") } totnoct=noctave+as.integer(s0log/nvoice)+1 #cwt from package Rwave totts.cwt=cwt(ts,totnoct,nvoice,w0,plot=0) ts.cwt=totts.cwt[,s0log:(s0log+noctave*nvoice)] #Normalization sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) smat <- matrix(rep(sqs,length(t)),nrow=length(t),byrow=TRUE) ts.cwt*smat } #NOTE: vect2mat = as.matrix ?! (dans aux.R) vect2mat <- function(vect) { vect <- as.vector(vect) matrix(vect[-(1:2)], delta, lscvect) } #fonction smCWT (dans aux.R) smCWT <- function(CWT, sw= 0, tw= 0, swabs= 0, nvoice= 12, noctave= 2, s0= 2, w0= 2*pi, lt= 24, dt= 0.5, scalevector ) { #noctave <- adjust.noctave(lt, dt, s0, tw, noctave) #scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0 wsp <- Mod(CWT) smwsp <- smooth.matrix(wsp, swabs) smsmwsp <- smooth.time(smwsp, tw, dt, scalevector) smsmwsp } #dans sowas.R (...donc on ne lisse pas à ce niveau ?) smooth.matrix <- function(wt,swabs) { if (swabs != 0) { smwt <- t(filter(t(wt),rep(1,2*swabs+1)/(2*swabs+1))) } else { smwt <- wt } smwt } smooth.time <- function(wt,tw,dt,scalevector) { smwt <- wt if (tw != 0) { for (i in 1:length(scalevector)) { twi <- as.integer(scalevector[i]*tw/dt) smwt[,i] <- filter(wt[,i],rep(1,2*twi+1)/(2*twi+1)) } } smwt } step2 = function(conso) { #(Benjamin) #à partir de là, "conso" == courbes synchrones n <- nrow(conso) delta <- ncol(conso) #17000 colonnes coeff 1, puis 17000 coeff 2... [non : dans chaque tranche du cube] # #NOTE: delta et lscvect pourraient etre gardés à part (communs) #TODO: automatic tune of these parameters ? (for other users) nvoice <- 4 # # noctave4 = 2^13 = 8192 half hours ~ 180 days noctave4 <- adjust.noctave(N = delta, dt = 1, s0 = 2, tw = 0, noctave = 13) # # 4 here represent 2^5 = 32 half-hours ~ 1 day scalevector4 <- 2^(4:(noctave4 * nvoice) / nvoice) * 2 lscvect4 <- length(scalevector4) lscvect <- lscvect4 # i should clean my code: werFam demands a lscvect # observations node with CWT Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1, scalevector = scalevector4, lt = delta, smooth = FALSE, nvoice = nvoice) #matrix: ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect) Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1])))) #NOTE: delta et lscvect pourraient etre gardés à part (communs) for(i in 1:n) Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) ) #rm(conso, Xcwt4); gc() ## _.b WER^2 distances ######## Xwer_dist <- matrix(0.0, n, n) for(i in 1:(n - 1)) { mat1 <- vect2mat(Xcwt2[i,]) for(j in (i + 1):n) { mat2 <- vect2mat(Xcwt2[j,]) num <- Mod(mat1 * Conj(mat2)) WX <- Mod(mat1 * Conj(mat1)) WY <- Mod(mat2 * Conj(mat2)) smsmnum <- smCWT(num, scalevector = scalevector4) smsmWX <- smCWT(WX, scalevector = scalevector4) smsmWY <- smCWT(WY, scalevector = scalevector4) wer2 <- sum(colSums(smsmnum)^2) / sum( sum(colSums(smsmWX) * colSums(smsmWY)) ) Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2)) Xwer_dist[j, i] <- Xwer_dist[i, j] } } diag(Xwer_dist) <- numeric(n) Wwer_dist }