#' computeWerDists #' #' Compute the WER distances between the synchrones curves (in columns), which are #' returned (e.g.) by \code{computeSynchrones()} #' #' @param indices Range of series indices to cluster #' @inheritParams claws #' @inheritParams computeSynchrones #' #' @return A distances matrix of size K x K where K == length(indices) #' #' @export computeWerDists = function(indices, getSeries, nb_series_per_chunk, nvoice, nbytes, endian, ncores_clust=1, verbose=FALSE, parll=TRUE) { n <- length(indices) L <- length(getSeries(1)) #TODO: not very nice way to get L noctave = ceiling(log2(L)) #min power of 2 to cover serie range # Since a CWT contains noctave*nvoice complex series, we deduce the number of CWT to # retrieve/put in one chunk. nb_cwt_per_chunk = max(1, floor(nb_series_per_chunk / (nvoice*noctave*2))) # Initialize result as a square big.matrix of size 'number of medoids' Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") # Generate n(n-1)/2 pairs for WER distances computations pairs = list() V = seq_len(n) for (i in 1:n) { V = V[-1] pairs = c(pairs, lapply(V, function(v) c(i,v))) } cwt_file = ".cwt.bin" # Compute the getSeries(indices) CWT, and store the results in the binary file computeSaveCWT = function(indices) { if (parll) { require("bigmemory", quietly=TRUE) require("Rwave", quietly=TRUE) require("epclust", quietly=TRUE) } # Obtain CWT as big vectors of real part + imaginary part (concatenate) ts_cwt <- sapply(indices, function(i) { ts <- scale(ts(getSeries(i)), center=TRUE, scale=FALSE) ts_cwt <- Rwave::cwt(ts, noctave, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE) c( as.double(Re(ts_cwt)),as.double(Im(ts_cwt)) ) }) # Serialization binarize(ts_cwt, cwt_file, nb_cwt_per_chunk, ",", nbytes, endian) } if (parll) { cl = parallel::makeCluster(ncores_clust) Xwer_dist_desc <- bigmemory::describe(Xwer_dist) parallel::clusterExport(cl, varlist=c("parll","nb_cwt_per_chunk","L", "Xwer_dist_desc","noctave","nvoice","getCWT"), envir=environment()) } if (verbose) cat(paste("--- Precompute and serialize synchrones CWT\n", sep="")) ignored <- if (parll) parallel::parLapply(cl, 1:n, computeSaveCWT) else lapply(1:n, computeSaveCWT) # Function to retrieve a synchrone CWT from (binary) file getCWT = function(index, L) { flat_cwt <- getDataInFile(index, cwt_file, nbytes, endian) cwt_length = length(flat_cwt) / 2 re_part = as.matrix(flat_cwt[1:cwt_length], nrow=L) im_part = as.matrix(flat_cwt[(cwt_length+1):(2*cwt_length)], nrow=L) re_part + 1i * im_part } #TODO: better repartition here, # Compute distance between columns i and j in synchrones computeDistanceIJ = function(pair) { if (parll) { # parallel workers start with an empty environment require("bigmemory", quietly=TRUE) require("epclust", quietly=TRUE) Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) } i = pair[1] ; j = pair[2] if (verbose && j==i+1 && !parll) cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep="")) # Compute CWT of columns i and j in synchrones cwt_i <- getCWT(i, L) cwt_j <- getCWT(j, L) # Compute the ratio of integrals formula 5.6 for WER^2 # in https://arxiv.org/abs/1101.4744v2 ยง5.3 num <- filterMA(Mod(cwt_i * Conj(cwt_j))) WX <- filterMA(Mod(cwt_i * Conj(cwt_i))) WY <- filterMA(Mod(cwt_j * Conj(cwt_j))) wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * (1 - wer2)) Xwer_dist[j,i] <- Xwer_dist[i,j] Xwer_dist[i,i] <- 0. } if (verbose) cat(paste("--- Compute WER distances\n", sep="")) ignored <- if (parll) parallel::parLapply(cl, pairs, computeDistanceIJ) else lapply(pairs, computeDistanceIJ) if (parll) parallel::stopCluster(cl) unlink(cwt_file) Xwer_dist[n,n] = 0. Xwer_dist[,] #~small matrix K1 x K1 }