#' computeWerDists #' #' Compute the WER distances between the series at specified indices, which are #' obtaind by \code{getSeries(indices)} #' #' @param indices Indices of the series to consider #' @param getSeries Function to retrieve series (argument: 'inds', integer vector), #' as columns of a matrix #' @param ncores Number of cores for parallel runs #' @inheritParams claws #' #' @return A distances matrix of size K x K where K == length(indices) #' #' @export computeWerDists <- function(indices, getSeries, nb_series_per_chunk, smooth_lvl=3, nvoice=4, nbytes=4, endian=.Platform$endian, ncores=3, verbose=FALSE) { n <- length(indices) L <- length(getSeries(1)) #TODO: not very neat way to get L noctave <- ceiling(log2(L)) #min power of 2 to cover serie range # Since a CWT contains noctave*nvoice complex series, we deduce the number of CWT to # retrieve/put in one chunk. nb_cwt_per_chunk <- max(1, floor(nb_series_per_chunk / (nvoice*noctave*2))) # Initialize result as a square big.matrix of size 'number of medoids' Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") cwt_file <- tempfile(pattern="epclust_cwt.bin_") # Compute the getSeries(indices) CWT, and store the results in the binary file computeSaveCWT <- function(inds) { if (verbose) cat(" Compute save CWT on ",length(inds)," indices\n", sep="") # Obtain CWT as big vectors of real part + imaginary part (concatenate) ts_cwt <- sapply(inds, function(i) { ts <- scale(ts(getSeries(i)), center=TRUE, scale=FALSE) ts_cwt <- Rwave::cwt(ts, noctave, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE) c( as.double(Re(ts_cwt)),as.double(Im(ts_cwt)) ) }) # Serialization binarize(ts_cwt, cwt_file, nb_cwt_per_chunk, ",", nbytes, endian) } # Function to retrieve a synchrone CWT from (binary) file getCWT <- function(index, L) { flat_cwt <- getDataInFile(index, cwt_file, nbytes, endian) cwt_length <- length(flat_cwt) / 2 re_part <- as.matrix(flat_cwt[1:cwt_length], nrow=L) im_part <- as.matrix(flat_cwt[(cwt_length+1):(2*cwt_length)], nrow=L) re_part + 1i * im_part } # Compute distances between columns i and j for j>i computeDistances <- function(i) { if (parll) { # parallel workers start with an empty environment require("epclust", quietly=TRUE) Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) } if (verbose) cat(paste(" Distances from ",i," to ",i+1,"...",n,"\n", sep="")) # Get CWT of column i, and run computations for columns j>i cwt_i <- getCWT(i, L) WX <- filterMA(Mod(cwt_i * Conj(cwt_i)), smooth_lvl) for (j in (i+1):n) { cwt_j <- getCWT(j, L) # Compute the ratio of integrals formula 5.6 for WER^2 # in https://arxiv.org/abs/1101.4744v2 paragraph 5.3 num <- filterMA(Mod(cwt_i * Conj(cwt_j)), smooth_lvl) WY <- filterMA(Mod(cwt_j * Conj(cwt_j)), smooth_lvl) wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * (1 - wer2)) Xwer_dist[j,i] <- Xwer_dist[i,j] } Xwer_dist[i,i] <- 0. } if (verbose) cat(paste("--- Precompute and serialize synchrones CWT\n", sep="")) # Split indices by packets of length at most nb_cwt_per_chunk indices_cwt <- .splitIndices(indices, nb_cwt_per_chunk) # NOTE: next loop could potentially be run in //. Indices would be permuted (by # serialization order), and synchronicity would be required because of concurrent # writes. Probably not worth the effort - but possible. for (inds in indices_cwt) computeSaveCWT(inds) parll <- (ncores > 1) if (parll) { # outfile=="" to see stderr/stdout on terminal cl <- if (verbose) parallel::makeCluster(ncores, outfile="") else parallel::makeCluster(ncores) Xwer_dist_desc <- bigmemory::describe(Xwer_dist) parallel::clusterExport(cl, envir=environment(), varlist=c("parll","n","L","Xwer_dist_desc","getCWT","verbose")) } if (verbose) cat(paste("--- Compute WER distances\n", sep="")) ignored <- if (parll) parallel::parLapply(cl, seq_len(n-1), computeDistances) else lapply(seq_len(n-1), computeDistances) Xwer_dist[n,n] <- 0. if (parll) parallel::stopCluster(cl) unlink(cwt_file) #remove binary file Xwer_dist[,] #~small matrix K1 x K1 }