#' @name clustering #' @rdname clustering #' @aliases clusteringTask1 clusteringTask2 computeClusters1 computeClusters2 #' #' @title Two-stage clustering, withing one task (see \code{claws()}) #' #' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in #' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed #' through discrete wavelets coefficients). #' \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones #' and then WER distances computations, before applying the clustering algorithm. #' \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic #' clustering procedures respectively for stage 1 and 2. The former applies the #' first clustering algorithm on a contributions matrix, while the latter clusters #' a set of series inside one task (~nb_items_clust1) #' #' @param indices Range of series indices to cluster in parallel (initial data) #' @param getContribs Function to retrieve contributions from initial series indices: #' \code{getContribs(indices)} outpus a contributions matrix #' @inheritParams computeSynchrones #' @inheritParams claws #' #' @return For \code{clusteringTask1()}, the indices of the computed (K1) medoids. #' Indices are irrelevant for stage 2 clustering, thus \code{clusteringTask2()} #' outputs a big.matrix of medoids (of size LxK2, K2 = final number of clusters) NULL #' @rdname clustering #' @export clusteringTask1 = function(indices, getContribs, K1, algoClust1, nb_items_clust1, ncores_clust=1, verbose=FALSE, parll=TRUE) { if (parll) { cl = parallel::makeCluster(ncores_clust, outfile = "") parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment()) } # Iterate clustering algorithm 1 until K1 medoids are found while (length(indices) > K1) { # Balance tasks by splitting the indices set - as evenly as possible indices_workers = .spreadIndices(indices, nb_items_clust1) if (verbose) cat(paste("*** [iterated] Clustering task 1 on ",length(indices)," series\n", sep="")) indices <- if (parll) { unlist( parallel::parLapply(cl, indices_workers, function(inds) { require("epclust", quietly=TRUE) inds[ algoClust1(getContribs(inds), K1) ] }) ) } else { unlist( lapply(indices_workers, function(inds) inds[ algoClust1(getContribs(inds), K1) ] ) ) } } if (parll) parallel::stopCluster(cl) indices #medoids } #' @rdname clustering #' @export clusteringTask2 = function(medoids, K2, algoClust2, getRefSeries, nb_ref_curves, nb_series_per_chunk, nbytes,endian,ncores_clust=1,verbose=FALSE,parll=TRUE) { if (verbose) cat(paste("*** Clustering task 2 on ",ncol(medoids)," synchrones\n", sep="")) if (ncol(medoids) <= K2) return (medoids) # A) Obtain synchrones, that is to say the cumulated power consumptions # for each of the K1 initial groups synchrones = computeSynchrones(medoids, getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll) # B) Compute the WER distances (Wavelets Extended coefficient of deteRmination) distances = computeWerDists(synchrones, nbytes, endian, ncores_clust, verbose, parll) # C) Apply clustering algorithm 2 on the WER distances matrix if (verbose) cat(paste(" algoClust2() on ",nrow(distances)," items\n", sep="")) medoids[ ,algoClust2(distances,K2) ] } #' computeSynchrones #' #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids, #' using euclidian distance. #' #' @param medoids big.matrix of medoids (curves of same length as initial series) #' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series #' have been replaced by stage-1 medoids) #' @param nb_ref_curves How many reference series? (This number is known at this stage) #' @inheritParams claws #' #' @return A big.matrix of size L x K1 where L = length of a serie #' #' @export computeSynchrones = function(medoids, getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) { # Synchrones computation is embarassingly parallel: compute it by chunks of series computeSynchronesChunk = function(indices) { if (parll) { require("bigmemory", quietly=TRUE) requireNamespace("synchronicity", quietly=TRUE) require("epclust", quietly=TRUE) # The big.matrix objects need to be attached to be usable on the workers synchrones <- bigmemory::attach.big.matrix(synchrones_desc) medoids <- bigmemory::attach.big.matrix(medoids_desc) m <- synchronicity::attach.mutex(m_desc) } # Obtain a chunk of reference series ref_series = getRefSeries(indices) nb_series = ncol(ref_series) # Get medoids indices for this chunk of series mi = computeMedoidsIndices(medoids@address, ref_series) # Update synchrones using mi above for (i in seq_len(nb_series)) { if (parll) synchronicity::lock(m) #locking required because several writes at the same time synchrones[, mi[i] ] = synchrones[, mi[i] ] + ref_series[,i] if (parll) synchronicity::unlock(m) } } K = ncol(medoids) ; L = nrow(medoids) # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in // synchrones = bigmemory::big.matrix(nrow=L, ncol=K, type="double", init=0.) # NOTE: synchronicity is only for Linux & MacOS; on Windows: run sequentially parll = (requireNamespace("synchronicity",quietly=TRUE) && parll && Sys.info()['sysname'] != "Windows") if (parll) { m <- synchronicity::boost.mutex() #for lock/unlock, see computeSynchronesChunk # mutex and big.matrix objects cannot be passed directly: # they will be accessed from their description m_desc <- synchronicity::describe(m) synchrones_desc = bigmemory::describe(synchrones) medoids_desc = bigmemory::describe(medoids) cl = parallel::makeCluster(ncores_clust) parallel::clusterExport(cl, envir=environment(), varlist=c("synchrones_desc","m_desc","medoids_desc","getRefSeries")) } if (verbose) cat(paste("--- Compute ",K," synchrones with ",nb_ref_curves," series\n", sep="")) # Balance tasks by splitting the indices set - maybe not so evenly, but # max==TRUE in next call ensures that no set has more than nb_series_per_chunk items. indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk, max=TRUE) ignored <- if (parll) parallel::parLapply(cl, indices_workers, computeSynchronesChunk) else lapply(indices_workers, computeSynchronesChunk) if (parll) parallel::stopCluster(cl) return (synchrones) } #' computeWerDists #' #' Compute the WER distances between the synchrones curves (in rows), which are #' returned (e.g.) by \code{computeSynchrones()} #' #' @param synchrones A big.matrix of synchrones, in rows. The series have same length #' as the series in the initial dataset #' @inheritParams claws #' #' @return A matrix of size K1 x K1 #' #' @export computeWerDists = function(synchrones, nbytes,endian,ncores_clust=1,verbose=FALSE,parll=TRUE) { n <- ncol(synchrones) L <- nrow(synchrones) #TODO: automatic tune of all these parameters ? (for other users) # 4 here represent 2^5 = 32 half-hours ~ 1 day nvoice <- 4 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones)) noctave = 13 Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") cwt_file = ".epclust_bin/cwt" #TODO: args, nb_per_chunk, nbytes, endian # Generate n(n-1)/2 pairs for WER distances computations pairs = list() V = seq_len(n) for (i in 1:n) { V = V[-1] pairs = c(pairs, lapply(V, function(v) c(i,v))) } computeSaveCWT = function(index) { ts <- scale(ts(synchrones[,index]), center=TRUE, scale=FALSE) totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE) ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] #Normalization sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) sqres <- sweep(ts.cwt,2,sqs,'*') res <- sqres / max(Mod(sqres)) #TODO: serializer les CWT, les récupérer via getDataInFile ; #--> OK, faut juste stocker comme séries simples de taille L*n' (53*17519) binarize(c(as.double(Re(res)),as.double(Im(res))), cwt_file, ncol(res), ",", nbytes, endian) } if (parll) { cl = parallel::makeCluster(ncores_clust) synchrones_desc <- bigmemory::describe(synchrones) Xwer_dist_desc <- bigmemory::describe(Xwer_dist) parallel::clusterExport(cl, envir=environment(), varlist=c("synchrones_desc","Xwer_dist_desc","totnoct","nvoice","w0","s0log", "noctave","s0","verbose","getCWT")) } if (verbose) { cat(paste("--- Compute WER dists\n", sep="")) # precompute save all CWT........ } #precompute and serialize all CWT ignored <- if (parll) parallel::parLapply(cl, 1:n, computeSaveCWT) else lapply(1:n, computeSaveCWT) getCWT = function(index) { #from cwt_file ... res <- getDataInFile(c(2*index-1,2*index), cwt_file, nbytes, endian) ###############TODO: } # Distance between rows i and j computeDistancesIJ = function(pair) { if (parll) { require("bigmemory", quietly=TRUE) require("epclust", quietly=TRUE) synchrones <- bigmemory::attach.big.matrix(synchrones_desc) Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) } i = pair[1] ; j = pair[2] if (verbose && j==i+1) cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep="")) cwt_i <- getCWT(i) cwt_j <- getCWT(j) num <- epclustFilter(Mod(cwt_i * Conj(cwt_j))) WX <- epclustFilter(Mod(cwt_i * Conj(cwt_i))) WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j))) wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * max(1 - wer2, 0.)) Xwer_dist[j,i] <- Xwer_dist[i,j] Xwer_dist[i,i] = 0. } if (verbose) { cat(paste("--- Compute WER dists\n", sep="")) } ignored <- if (parll) parallel::parLapply(cl, pairs, computeDistancesIJ) else lapply(pairs, computeDistancesIJ) if (parll) parallel::stopCluster(cl) Xwer_dist[n,n] = 0. distances <- Xwer_dist[,] rm(Xwer_dist) ; gc() distances #~small matrix K1 x K1 } # Helper function to divide indices into balanced sets # If max == TRUE, sets sizes cannot exceed nb_per_set .spreadIndices = function(indices, nb_per_set, max=FALSE) { L = length(indices) nb_workers = floor( L / nb_per_set ) rem = L %% nb_per_set if (nb_workers == 0 || (nb_workers==1 && rem==0)) { # L <= nb_per_set, simple case indices_workers = list(indices) } else { indices_workers = lapply( seq_len(nb_workers), function(i) indices[(nb_per_set*(i-1)+1):(nb_per_set*i)] ) if (max) { # Sets are not so well balanced, but size is supposed to be critical return ( c( indices_workers, (L-rem+1):L ) ) } # Spread the remaining load among the workers rem = L %% nb_per_set while (rem > 0) { index = rem%%nb_workers + 1 indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1]) rem = rem - 1 } } indices_workers }