#' @name clustering #' @rdname clustering #' @aliases clusteringTask computeClusters1 computeClusters2 #' #' @title Two-stages clustering, withing one task (see \code{claws()}) #' #' @description \code{clusteringTask()} runs one full task, which consists in iterated stage 1 #' clustering (on nb_curves / ntasks energy contributions, computed through discrete #' wavelets coefficients). \code{computeClusters1()} and \code{computeClusters2()} #' correspond to the atomic clustering procedures respectively for stage 1 and 2. #' The former applies the clustering algorithm (PAM) on a contributions matrix, while #' the latter clusters a chunk of series inside one task (~max nb_series_per_chunk) #' #' @param indices Range of series indices to cluster in parallel (initial data) #' @param getContribs Function to retrieve contributions from initial series indices: #' \code{getContribs(indices)} outpus a contributions matrix #' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()}) #' @inheritParams computeSynchrones #' @inheritParams claws #' #' @return For \code{clusteringTask()} and \code{computeClusters1()}, the indices of the #' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus #' \code{computeClusters2()} outputs a matrix of medoids #' (of size limited by nb_series_per_chunk) NULL #' @rdname clustering #' @export clusteringTask = function(indices, getContribs, K1, nb_series_per_chunk, ncores_clust) { #NOTE: comment out parallel sections for debugging #propagate verbose arg ?! # cl = parallel::makeCluster(ncores_clust) # parallel::clusterExport(cl, varlist=c("getContribs","K1"), envir=environment()) repeat { print(length(indices)) nb_workers = max( 1, floor( length(indices) / nb_series_per_chunk ) ) indices_workers = lapply( seq_len(nb_workers), function(i) indices[(nb_series_per_chunk*(i-1)+1):(nb_series_per_chunk*i)] ) # Spread the remaining load among the workers rem = length(indices) %% nb_series_per_chunk while (rem > 0) { index = rem%%nb_workers + 1 indices_workers[[index]] = c(indices_workers[[index]], tail(indices,rem)) rem = rem - 1 } # indices = unlist( parallel::parLapply( cl, indices_workers, function(inds) { indices = unlist( lapply( indices_workers, function(inds) { # require("epclust", quietly=TRUE) print(paste(" ",length(inds))) ## PROBLEME ICI : 21104 ??! inds[ computeClusters1(getContribs(inds), K1) ] } ) ) if (length(indices) == K1) break } # parallel::stopCluster(cl) indices #medoids } #' @rdname clustering #' @export computeClusters1 = function(contribs, K1) cluster::pam(contribs, K1, diss=FALSE)$id.med #' @rdname clustering #' @export computeClusters2 = function(medoids, K2, getRefSeries, nb_series_per_chunk) { synchrones = computeSynchrones(medoids, getRefSeries, nb_series_per_chunk) medoids[ cluster::pam(computeWerDists(synchrones), K2, diss=TRUE)$medoids , ] } #' computeSynchrones #' #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids, #' using L2 distances. #' #' @param medoids Matrix of medoids (curves of same legnth as initial series) #' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series #' have been replaced by stage-1 medoids) #' @inheritParams claws #' #' @export computeSynchrones = function(medoids, getRefSeries, nb_series_per_chunk) { K = nrow(medoids) synchrones = matrix(0, nrow=K, ncol=ncol(medoids)) counts = rep(0,K) index = 1 repeat { range = (index-1) + seq_len(nb_series_per_chunk) ref_series = getRefSeries(range) if (is.null(ref_series)) break #get medoids indices for this chunk of series for (i in seq_len(nrow(ref_series))) { j = which.min( rowSums( sweep(medoids, 2, ref_series[i,], '-')^2 ) ) synchrones[j,] = synchrones[j,] + ref_series[i,] counts[j] = counts[j] + 1 } index = index + nb_series_per_chunk } #NOTE: odds for some clusters to be empty? (when series already come from stage 2) # ...maybe; but let's hope resulting K1' be still quite bigger than K2 synchrones = sweep(synchrones, 1, counts, '/') synchrones[ sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,]))) , ] } #' computeWerDists #' #' Compute the WER distances between the synchrones curves (in rows), which are #' returned (e.g.) by \code{computeSynchrones()} #' #' @param synchrones A matrix of synchrones, in rows. The series have same length as the #' series in the initial dataset #' #' @export computeWerDists = function(synchrones) { n <- nrow(synchrones) delta <- ncol(synchrones) #TODO: automatic tune of all these parameters ? (for other users) nvoice <- 4 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones)) noctave = 13 # 4 here represent 2^5 = 32 half-hours ~ 1 day #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) scalevector <- 2^(4:(noctave * nvoice) / nvoice) * 2 #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 s0=2 w0=2*pi scaled=FALSE s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) totnoct = noctave + as.integer(s0log/nvoice) + 1 # (normalized) observations node with CWT Xcwt4 <- lapply(seq_len(n), function(i) { ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled) totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0) ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] #Normalization sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*') sqres / max(Mod(sqres)) }) Xwer_dist <- matrix(0., n, n) fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) for (i in 1:(n-1)) { for (j in (i+1):n) { #TODO: later, compute CWT here (because not enough storage space for 200k series) # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) Xwer_dist[j,i] <- Xwer_dist[i,j] } } diag(Xwer_dist) <- numeric(n) Xwer_dist }