#' @name clustering #' @rdname clustering #' @aliases clusteringTask1 computeClusters1 computeClusters2 #' #' @title Two-stage clustering, withing one task (see \code{claws()}) #' #' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in #' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed #' through discrete wavelets coefficients). #' \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones #' and then WER distances computations, before applying the clustering algorithm. #' \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic #' clustering procedures respectively for stage 1 and 2. The former applies the #' clustering algorithm (PAM) on a contributions matrix, while the latter clusters #' a chunk of series inside one task (~max nb_series_per_chunk) #' #' @param indices Range of series indices to cluster in parallel (initial data) #' @param getContribs Function to retrieve contributions from initial series indices: #' \code{getContribs(indices)} outpus a contributions matrix #' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()}) #' @param distances matrix of K1 x K1 (WER) distances between synchrones #' @inheritParams computeSynchrones #' @inheritParams claws #' #' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the #' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus #' \code{computeClusters2()} outputs a big.matrix of medoids #' (of size limited by nb_series_per_chunk) NULL #' @rdname clustering #' @export clusteringTask1 = function( indices, getContribs, K1, nb_series_per_chunk, ncores_clust=1, verbose=FALSE, parll=TRUE) { if (verbose) cat(paste("*** Clustering task 1 on ",length(indices)," lines\n", sep="")) if (parll) { cl = parallel::makeCluster(ncores_clust) parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment()) } while (length(indices) > K1) { indices_workers = .spreadIndices(indices, nb_series_per_chunk) indices <- if (parll) { unlist( parallel::parLapply(cl, indices_workers, function(inds) { require("epclust", quietly=TRUE) inds[ computeClusters1(getContribs(inds), K1, verbose) ] }) ) } else { unlist( lapply(indices_workers, function(inds) inds[ computeClusters1(getContribs(inds), K1, verbose) ] ) ) } } if (parll) parallel::stopCluster(cl) indices #medoids } #' @rdname clustering #' @export clusteringTask2 = function(medoids, K2, getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) { if (verbose) cat(paste("*** Clustering task 2 on ",nrow(medoids)," lines\n", sep="")) if (nrow(medoids) <= K2) return (medoids) synchrones = computeSynchrones(medoids, getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll) distances = computeWerDists(synchrones, ncores_clust, verbose, parll) medoids[ computeClusters2(distances,K2,verbose), ] } #' @rdname clustering #' @export computeClusters1 = function(contribs, K1, verbose=FALSE) { if (verbose) cat(paste(" computeClusters1() on ",nrow(contribs)," lines\n", sep="")) cluster::pam(contribs, K1, diss=FALSE)$id.med } #' @rdname clustering #' @export computeClusters2 = function(distances, K2, verbose=FALSE) { if (verbose) cat(paste(" computeClusters2() on ",nrow(distances)," lines\n", sep="")) cluster::pam(distances, K2, diss=TRUE)$id.med } #' computeSynchrones #' #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids, #' using L2 distances. #' #' @param medoids big.matrix of medoids (curves of same length as initial series) #' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series #' have been replaced by stage-1 medoids) #' @param nb_ref_curves How many reference series? (This number is known at this stage) #' @inheritParams claws #' #' @return A big.matrix of size K1 x L where L = data_length #' #' @export computeSynchrones = function(medoids, getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) { if (verbose) cat(paste("--- Compute synchrones\n", sep="")) computeSynchronesChunk = function(indices) { ref_series = getRefSeries(indices) nb_series = nrow(ref_series) if (parll) { require("bigmemory", quietly=TRUE) require("synchronicity", quietly=TRUE) require("epclust", quietly=TRUE) synchrones <- bigmemory::attach.big.matrix(synchrones_desc) medoids <- bigmemory::attach.big.matrix(medoids_desc) m <- synchronicity::attach.mutex(m_desc) } #TODO: use dbs(), #https://www.r-bloggers.com/debugging-parallel-code-with-dbs/ #http://gforge.se/2015/02/how-to-go-parallel-in-r-basics-tips/ #OK :: #write(length(indices), file="TOTO") #write( computeMedoidsIndices(medoids@address, getRefSeries(indices[1:600])), file="TOTO") #stop() # write(indices, file="TOTO", ncolumns=10, append=TRUE) #write("medoids", file = "TOTO", ncolumns=1, append=TRUE) #write(medoids[1,1:3], file = "TOTO", ncolumns=1, append=TRUE) #write("synchrones", file = "TOTO", ncolumns=1, append=TRUE) #write(synchrones[1,1:3], file = "TOTO", ncolumns=1, append=TRUE) #NOT OK :: (should just be "ref_series") ...or yes ? race problems mutex then ? ?! #get medoids indices for this chunk of series mi = computeMedoidsIndices(medoids@address, getRefSeries(indices[1:600])) #ref_series) write("MI ::::", file = "TOTO", ncolumns=1, append=TRUE) write(mi[1:3], file = "TOTO", ncolumns=1, append=TRUE) # #R-equivalent, requiring a matrix (thus potentially breaking "fit-in-memory" hope) # mat_meds = medoids[,] # mi = rep(NA,nb_series) # for (i in 1:nb_series) # mi[i] <- which.min( rowSums( sweep(mat_meds, 2, ref_series[i,], '-')^2 ) ) # rm(mat_meds); gc() for (i in seq_len(nb_series)) { if (parll) synchronicity::lock(m) synchrones[mi[i],] = synchrones[mi[i],] + ref_series[i,] counts[mi[i],1] = counts[mi[i],1] + 1 if (parll) synchronicity::unlock(m) } } K = nrow(medoids) ; L = ncol(medoids) # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in // # TODO: if size > RAM (not our case), use file-backed big.matrix synchrones = bigmemory::big.matrix(nrow=K, ncol=L, type="double", init=0.) counts = bigmemory::big.matrix(nrow=K, ncol=1, type="double", init=0) # synchronicity is only for Linux & MacOS; on Windows: run sequentially parll = (requireNamespace("synchronicity",quietly=TRUE) && parll && Sys.info()['sysname'] != "Windows") if (parll) { m <- synchronicity::boost.mutex() m_desc <- synchronicity::describe(m) synchrones_desc = bigmemory::describe(synchrones) medoids_desc = bigmemory::describe(medoids) cl = parallel::makeCluster(ncores_clust) parallel::clusterExport(cl, varlist=c("synchrones_desc","counts","verbose","m_desc","medoids_desc","getRefSeries"), envir=environment()) } indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk) ignored <- if (parll) parallel::parLapply(cl, indices_workers, computeSynchronesChunk) else lapply(indices_workers, computeSynchronesChunk) if (parll) parallel::stopCluster(cl) #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') ) for (i in seq_len(K)) synchrones[i,] = synchrones[i,] / counts[i,1] #NOTE: odds for some clusters to be empty? (when series already come from stage 2) # ...maybe; but let's hope resulting K1' be still quite bigger than K2 noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,]))) if (all(noNA_rows)) return (synchrones) # Else: some clusters are empty, need to slice synchrones synchrones[noNA_rows,] } #' computeWerDists #' #' Compute the WER distances between the synchrones curves (in rows), which are #' returned (e.g.) by \code{computeSynchrones()} #' #' @param synchrones A big.matrix of synchrones, in rows. The series have same length #' as the series in the initial dataset #' @inheritParams claws #' #' @return A matrix of size K1 x K1 #' #' @export computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE) { if (verbose) cat(paste("--- Compute WER dists\n", sep="")) n <- nrow(synchrones) delta <- ncol(synchrones) #TODO: automatic tune of all these parameters ? (for other users) nvoice <- 4 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones)) noctave = 13 # 4 here represent 2^5 = 32 half-hours ~ 1 day #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1) #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 s0=2 w0=2*pi scaled=FALSE s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) totnoct = noctave + as.integer(s0log/nvoice) + 1 Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") fcoefs = rep(1/3, 3) #moving average on 3 values # Generate n(n-1)/2 pairs for WER distances computations pairs = list() V = seq_len(n) for (i in 1:n) { V = V[-1] pairs = c(pairs, lapply(V, function(v) c(i,v))) } # Distance between rows i and j computeDistancesIJ = function(pair) { require("bigmemory", quietly=TRUE) require("epclust", quietly=TRUE) synchrones <- bigmemory::attach.big.matrix(synchrones_desc) Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) computeCWT = function(i) { ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled) totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE) ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] #Normalization sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) sqres <- sweep(ts.cwt,2,sqs,'*') sqres / max(Mod(sqres)) } i = pair[1] ; j = pair[2] if (verbose && j==i+1) cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep="")) cwt_i = computeCWT(i) cwt_j = computeCWT(j) num <- epclustFilter(Mod(cwt_i * Conj(cwt_j))) WX <- epclustFilter(Mod(cwt_i * Conj(cwt_i))) WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j))) wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * (1 - wer2)) Xwer_dist[j,i] <- Xwer_dist[i,j] Xwer_dist[i,i] = 0. } if (parll) { cl = parallel::makeCluster(ncores_clust) synchrones_desc <- bigmemory::describe(synchrones) Xwer_dist_desc_desc <- bigmemory::describe(Xwer_dist) parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct", "nvoice","w0","s0log","noctave","s0","verbose"), envir=environment()) } ignored <- if (parll) parallel::parLapply(cl, pairs, computeDistancesIJ) else lapply(pairs, computeDistancesIJ) if (parll) parallel::stopCluster(cl) Xwer_dist[n,n] = 0. distances <- Xwer_dist[,] rm(Xwer_dist) ; gc() distances #~small matrix K1 x K1 } # Helper function to divide indices into balanced sets .spreadIndices = function(indices, nb_per_chunk) { L = length(indices) nb_workers = floor( L / nb_per_chunk ) if (nb_workers == 0) { # L < nb_series_per_chunk, simple case indices_workers = list(indices) } else { indices_workers = lapply( seq_len(nb_workers), function(i) indices[(nb_per_chunk*(i-1)+1):(nb_per_chunk*i)] ) # Spread the remaining load among the workers rem = L %% nb_per_chunk while (rem > 0) { index = rem%%nb_workers + 1 indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1]) rem = rem - 1 } } indices_workers }