#' @name clustering #' @rdname clustering #' @aliases clusteringTask1 computeClusters1 computeClusters2 #' #' @title Two-stage clustering, withing one task (see \code{claws()}) #' #' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in #' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed #' through discrete wavelets coefficients). #' \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones #' and then WER distances computations, before applying the clustering algorithm. #' \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic #' clustering procedures respectively for stage 1 and 2. The former applies the #' clustering algorithm (PAM) on a contributions matrix, while the latter clusters #' a chunk of series inside one task (~max nb_series_per_chunk) #' #' @param indices Range of series indices to cluster in parallel (initial data) #' @param getContribs Function to retrieve contributions from initial series indices: #' \code{getContribs(indices)} outpus a contributions matrix #' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()}) #' @inheritParams computeSynchrones #' @inheritParams claws #' #' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the #' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus #' \code{computeClusters2()} outputs a big.matrix of medoids #' (of size limited by nb_series_per_chunk) NULL #' @rdname clustering #' @export clusteringTask1 = function( indices, getContribs, K1, nb_series_per_chunk, ncores_clust=1, verbose=FALSE, parll=TRUE) { if (verbose) cat(paste("*** Clustering task on ",length(indices)," lines\n", sep="")) wrapComputeClusters1 = function(inds) { if (parll) require("epclust", quietly=TRUE) if (verbose) cat(paste(" computeClusters1() on ",length(inds)," lines\n", sep="")) inds[ computeClusters1(getContribs(inds), K1) ] } if (parll) { cl = parallel::makeCluster(ncores_clust) parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment()) } while (length(indices) > K1) { indices_workers = .spreadIndices(indices, nb_series_per_chunk) if (parll) indices = unlist( parallel::parLapply(cl, indices_workers, wrapComputeClusters1) ) else indices = unlist( lapply(indices_workers, wrapComputeClusters1) ) } if (parll) parallel::stopCluster(cl) indices #medoids } #' @rdname clustering #' @export clusteringTask2 = function(medoids, K2, getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) { if (nrow(medoids) <= K2) return (medoids) synchrones = computeSynchrones(medoids, getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll) distances = computeWerDists(synchrones, ncores_clust, verbose, parll) # PAM in package 'cluster' cannot take big.matrix in input: need to cast it mat_dists = matrix(nrow=K1, ncol=K1) for (i in seq_len(K1)) mat_dists[i,] = distances[i,] medoids[ computeClusters2(mat_dists,K2), ] } #' @rdname clustering #' @export computeClusters1 = function(contribs, K1) cluster::pam(contribs, K1, diss=FALSE)$id.med #' @rdname clustering #' @export computeClusters2 = function(distances, K2) cluster::pam(distances, K2, diss=TRUE)$id.med #' computeSynchrones #' #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids, #' using L2 distances. #' #' @param medoids big.matrix of medoids (curves of same length as initial series) #' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series #' have been replaced by stage-1 medoids) #' @param nb_ref_curves How many reference series? (This number is known at this stage) #' @inheritParams claws #' #' @return A big.matrix of size K1 x L where L = data_length #' #' @export computeSynchrones = function(medoids, getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) { computeSynchronesChunk = function(indices) { if (verbose) cat(paste("--- Compute synchrones for ",length(indices)," lines\n", sep="")) ref_series = getRefSeries(indices) #get medoids indices for this chunk of series for (i in seq_len(nrow(ref_series))) { j = which.min( rowSums( sweep(medoids, 2, ref_series[i,], '-')^2 ) ) if (parll) synchronicity::lock(m) synchrones[j,] = synchrones[j,] + ref_series[i,] counts[j,1] = counts[j,1] + 1 if (parll) synchronicity::unlock(m) } } K = nrow(medoids) # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in // # TODO: if size > RAM (not our case), use file-backed big.matrix synchrones = bigmemory::big.matrix(nrow=K,ncol=ncol(medoids),type="double",init=0.) counts = bigmemory::big.matrix(nrow=K,ncol=1,type="double",init=0) # synchronicity is only for Linux & MacOS; on Windows: run sequentially parll = (requireNamespace("synchronicity",quietly=TRUE) && parll && Sys.info()['sysname'] != "Windows") if (parll) m <- synchronicity::boost.mutex() if (parll) { cl = parallel::makeCluster(ncores_clust) parallel::clusterExport(cl, varlist=c("synchrones","counts","verbose","medoids","getRefSeries"), envir=environment()) } indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk) ignored <- if (parll) parallel::parLapply(indices_workers, computeSynchronesChunk) else lapply(indices_workers, computeSynchronesChunk) if (parll) parallel::stopCluster(cl) #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') ) for (i in seq_len(K)) synchrones[i,] = synchrones[i,] / counts[i,1] #NOTE: odds for some clusters to be empty? (when series already come from stage 2) # ...maybe; but let's hope resulting K1' be still quite bigger than K2 noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,]))) if (all(noNA_rows)) return (synchrones) # Else: some clusters are empty, need to slice synchrones synchrones[noNA_rows,] } #' computeWerDists #' #' Compute the WER distances between the synchrones curves (in rows), which are #' returned (e.g.) by \code{computeSynchrones()} #' #' @param synchrones A big.matrix of synchrones, in rows. The series have same length #' as the series in the initial dataset #' @inheritParams claws #' #' @return A big.matrix of size K1 x K1 #' #' @export computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE) { #TODO: re-organize to call computeWerDist(x,y) [C] (in //?) from two indices + big.matrix n <- nrow(synchrones) delta <- ncol(synchrones) #TODO: automatic tune of all these parameters ? (for other users) nvoice <- 4 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones)) noctave = 13 # 4 here represent 2^5 = 32 half-hours ~ 1 day #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1) #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 s0=2 w0=2*pi scaled=FALSE s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) totnoct = noctave + as.integer(s0log/nvoice) + 1 computeCWT = function(i) { if (verbose) cat(paste("+++ Compute Rwave::cwt() on serie ",i,"\n", sep="")) ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled) totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE) ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] #Normalization sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) sqres <- sweep(ts.cwt,2,sqs,'*') sqres / max(Mod(sqres)) } if (parll) { cl = parallel::makeCluster(ncores_clust) parallel::clusterExport(cl, varlist=c("synchrones","totnoct","nvoice","w0","s0log","noctave","s0","verbose"), envir=environment()) } # list of CWT from synchrones # TODO: fit in RAM, OK? If not, 2 options: serialize, compute individual distances Xcwt4 <- if (parll) parallel::parLapply(cl, seq_len(n), computeCWT) else lapply(seq_len(n), computeCWT) if (parll) parallel::stopCluster(cl) Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) if (verbose) cat("*** Compute WER distances from CWT\n") #TODO: computeDistances(i,j), et répartir les n(n-1)/2 couples d'indices #là c'est trop déséquilibré computeDistancesLineI = function(i) { if (verbose) cat(paste(" Line ",i,"\n", sep="")) for (j in (i+1):n) { #TODO: 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) if (parll) synchronicity::lock(m) Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) Xwer_dist[j,i] <- Xwer_dist[i,j] if (parll) synchronicity::unlock(m) } Xwer_dist[i,i] = 0. } parll = (requireNamespace("synchronicity",quietly=TRUE) && parll && Sys.info()['sysname'] != "Windows") if (parll) m <- synchronicity::boost.mutex() ignored <- if (parll) { parallel::mclapply(seq_len(n-1), computeDistancesLineI, mc.cores=ncores_clust, mc.allow.recursive=FALSE) } else lapply(seq_len(n-1), computeDistancesLineI) Xwer_dist[n,n] = 0. Xwer_dist } # Helper function to divide indices into balanced sets .spreadIndices = function(indices, nb_per_chunk) { L = length(indices) nb_workers = floor( L / nb_per_chunk ) if (nb_workers == 0) { # L < nb_series_per_chunk, simple case indices_workers = list(indices) } else { indices_workers = lapply( seq_len(nb_workers), function(i) indices[(nb_per_chunk*(i-1)+1):(nb_per_chunk*i)] ) # Spread the remaining load among the workers rem = L %% nb_per_chunk while (rem > 0) { index = rem%%nb_workers + 1 indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1]) rem = rem - 1 } } indices_workers }