X-Git-Url: https://git.auder.net/?a=blobdiff_plain;f=pkg%2FR%2FoptimParams.R;h=a45f71ac4f64769f7da037324efef533ffa58ba0;hb=b357ac5457105ee87ad8650d61ad3c3845e0df95;hp=c061fcf0b7d8690e901b02d8ae4943c7c940701a;hpb=d08fef424150599b8095727c0f9870ca9535fb65;p=morpheus.git diff --git a/pkg/R/optimParams.R b/pkg/R/optimParams.R index c061fcf..a45f71a 100644 --- a/pkg/R/optimParams.R +++ b/pkg/R/optimParams.R @@ -31,12 +31,12 @@ #' o$f( o$linArgs(par0) ) #' o$f( o$linArgs(par1) ) #' @export -optimParams = function(X, Y, K, link=c("logit","probit")) +optimParams <- function(X, Y, K, link=c("logit","probit")) { # Check arguments if (!is.matrix(X) || any(is.na(X))) stop("X: numeric matrix, no NAs") - if (!is.numeric(Y) || any(is.na(Y)) || any(Y!=0 | Y!=1)) + if (!is.numeric(Y) || any(is.na(Y)) || any(Y!=0 & Y!=1)) stop("Y: binary vector with 0 and 1 only") link <- match.arg(link) if (!is.numeric(K) || K!=floor(K) || K < 2) @@ -86,11 +86,11 @@ setRefClass( stop("Missing arguments") # Precompute empirical moments - M <- computeMoments(optargs$X,optargs$Y) + M <- computeMoments(X, Y) M1 <- as.double(M[[1]]) M2 <- as.double(M[[2]]) M3 <- as.double(M[[3]]) - Mhat <<- matrix(c(M1,M2,M3), ncol=1) + Mhat <<- c(M1, M2, M3) n <<- nrow(X) d <<- length(M1) @@ -117,15 +117,15 @@ setRefClass( computeW = function(θ) { - dim <- d + d^2 + d^3 - W <<- solve( matrix( .C("Compute_Omega", - X=as.double(X), Y=as.double(Y), M=as.double(M(θ)), - pn=as.integer(n), pd=as.integer(d), - W=as.double(W), PACKAGE="morpheus")$W, nrow=dim, ncol=dim) ) + #require(MASS) + dd <- d + d^2 + d^3 + W <<- MASS::ginv( matrix( .C("Compute_Omega", + X=as.double(X), Y=Y, M=Moments(θ), pn=as.integer(n), pd=as.integer(d), + W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) ) NULL #avoid returning W }, - M <- function(θ) + Moments = function(θ) { "Vector of moments, of size d+d^2+d^3" @@ -138,17 +138,18 @@ setRefClass( β2 <- apply(β, 2, function(col) col %o% col) β3 <- apply(β, 2, function(col) col %o% col %o% col) - matrix(c( + c( β %*% (p * .G(li,1,λ,b)), β2 %*% (p * .G(li,2,λ,b)), - β3 %*% (p * .G(li,3,λ,b))), ncol=1) + β3 %*% (p * .G(li,3,λ,b))) }, f = function(θ) { - "Product t(Mi - hat_Mi) W (Mi - hat_Mi) with Mi(theta)" + "Product t(hat_Mi - Mi) W (hat_Mi - Mi) with Mi(theta)" - A <- M(θ) - Mhat + L <- expArgs(θ) + A <- as.matrix(Mhat - Moments(L)) t(A) %*% W %*% A }, @@ -156,19 +157,19 @@ setRefClass( { "Gradient of f, dimension (K-1) + d*K + K = (d+2)*K - 1" - -2 * t(grad_M(θ)) %*% getW(θ) %*% (Mhat - M(θ)) - } + L <- expArgs(θ) + -2 * t(grad_M(L)) %*% W %*% as.matrix((Mhat - Moments(L))) + }, grad_M = function(θ) { "Gradient of the vector of moments, size (dim=)d+d^2+d^3 x K-1+K+d*K" - L <- expArgs(θ) - p <- L$p - β <- L$β + p <- θ$p + β <- θ$β λ <- sqrt(colSums(β^2)) μ <- sweep(β, 2, λ, '/') - b <- L$b + b <- θ$b res <- matrix(nrow=nrow(W), ncol=0) @@ -186,11 +187,10 @@ setRefClass( # Gradient on p: K-1 columns, dim rows km1 = 1:(K-1) res <- cbind(res, rbind( - t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ), - t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ), - t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ))) + sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K], + sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K], + sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] )) - # TODO: understand derivatives order and match the one in optim init param for (i in 1:d) { # i determines the derivated matrix dβ[2,3] @@ -217,14 +217,14 @@ setRefClass( dβ3_right[block,] <- dβ3_right[block,] + β2 dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*') - res <- cbind(res, rbind(t(dβ), t(dβ2), t(dβ3))) + res <- cbind(res, rbind(dβ, dβ2, dβ3)) } # Gradient on b res <- cbind(res, rbind( - t( sweep(β, 2, p * G2, '*') ), - t( sweep(β2, 2, p * G3, '*') ), - t( sweep(β3, 2, p * G4, '*') ))) + sweep(β, 2, p * G2, '*'), + sweep(β2, 2, p * G3, '*'), + sweep(β3, 2, p * G4, '*') )) res }, @@ -249,17 +249,21 @@ setRefClass( else if (any(is.na(θ0$b))) stop("θ0$b cannot have missing values") - op_res = constrOptim( linArgs(θ0), .self$f, .self$grad_f, - ui=cbind( - rbind( rep(-1,K-1), diag(K-1) ), - matrix(0, nrow=K, ncol=(d+1)*K) ), - ci=c(-1,rep(0,K-1)) ) - - # debug: - print(computeW(expArgs(op_res$par))) - # We get a first non-trivial estimation of W - # TODO: loop, this redefine f, so that we can call constrOptim again... - # Stopping condition? N iterations? Delta <= ε ? + # TODO: stopping condition? N iterations? Delta <= epsilon ? + for (loop in 1:10) + { + op_res = constrOptim( linArgs(θ0), .self$f, .self$grad_f, + ui=cbind( + rbind( rep(-1,K-1), diag(K-1) ), + matrix(0, nrow=K, ncol=(d+1)*K) ), + ci=c(-1,rep(0,K-1)) ) + + computeW(expArgs(op_res$par)) + # debug: + #print(W) + print(op_res$value) + print(expArgs(op_res$par)) + } expArgs(op_res$par) }