X-Git-Url: https://git.auder.net/?a=blobdiff_plain;f=epclust%2FR%2Fstage2.R;h=3ccbbad10903b256c005b0476b418bf3bbfdd9a3;hb=db6fc17ddd53fb0c64cf957296dc615ba830db56;hp=9c15a741315867c2d4ee13d0c9968445d6bfc1f9;hpb=3ccd1e391850c1f055267b05bf89589113884344;p=epclust.git diff --git a/epclust/R/stage2.R b/epclust/R/stage2.R index 9c15a74..3ccbbad 100644 --- a/epclust/R/stage2.R +++ b/epclust/R/stage2.R @@ -1,188 +1,49 @@ -#point avec Jairo: -#rentrer dans code C cwt continue Rwave -#passer partie sowas à C -#fct qui pour deux series (ID, medoides) renvoie distance WER (Rwave ou à moi) -#transformee croisee , smoothing lissage 3 composantes , + calcul pour WER -#attention : code fait pour des series temps desynchronisees ! (deltat, dt == 1,2 ...) -#determiner nvoice noctave (entre octave + petit et + grand) - library("Rwave") #Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1 -#TODO: bout de code qui calcule les courbes synchrones après étapes 1+2 à partir des ID médoïdes - -#toCWT: (aux) -##NOTE: renvoie une matrice 3D -toCWT <- function(X, sw=0, tw=0, swabs=0, nvoice=12, noctave=5, s0=2, w0=2*pi, - lt=24, dt=0.5, spectra=FALSE, smooth=TRUE, scaled=FALSE, scalevector) -{ - noctave <- adjust.noctave(lt, dt, s0, tw, noctave) - if(missing(scalevector)) - scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0 - res <- lapply(1:nrow(X), function(n) { - tsX <- ts( X[n,] ) - tsCent <- tsX - mean(tsX) - if(scaled) - tsCent <- ts(scale(tsCent)) - tsCent.cwt <- cwt.ts(tsCent, s0, noctave, nvoice, w0) - tsCent.cwt - }) - if( spectra ) - res <- lapply(res, function(l) Mod(l)^2 ) - if( smooth ) - res <- lapply(res, smCWT, swabs = swabs, tw = tw, dt = dt, scalevector = scalevector) - resArray <- array(NA, c(nrow(res[[1]]), ncol(res[[1]]), length(res))) - for( l in 1:length(res) ) - resArray[ , , l] <- res[[l]] - resArray -} - -#from sowas -adjust.noctave <- function(N,dt,s0,tw,noctave) -{ - if (tw>0) - { - dumno <- as.integer((log(N*dt)-log(2*tw*s0))/log(2)) - if (dumno= 1 + s0=2 + w0=2*pi + scaled=FALSE + s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) + totnoct = noctave + as.integer(s0log/nvoice) + 1 + + # (normalized) observations node with CWT + Xcwt4 <- lapply(seq_len(n), function(i) { + ts <- scale(ts(conso[i,]), center=TRUE, scale=scaled) + totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0) + ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] + #Normalization + sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) + sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*') + sqres / max(Mod(sqres)) + }) - ## _.b WER^2 distances ######## - Xwer_dist <- matrix(0.0, n, n) - for(i in 1:(n - 1)) + Xwer_dist <- matrix(0., n, n) + fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) + for (i in 1:(n-1)) { -#browser() -##ERROR là sans FIX lscvect :: delta lscvect --> taille ??! - mat1 <- vect2mat(Xcwt2[i,], delta, lscvect) - - for(j in (i + 1):n) + for (j in (i+1):n) { - mat2 <- vect2mat(Xcwt2[j,], delta, lscvect) - num <- Mod(mat1 * Conj(mat2)) - WX <- Mod(mat1 * Conj(mat1)) - WY <- Mod(mat2 * Conj(mat2)) - smsmnum <- smCWT(num, scalevector = scalevector4) - smsmWX <- smCWT(WX, scalevector = scalevector4) - smsmWY <- smCWT(WY, scalevector = scalevector4) - wer2 <- sum(colSums(smsmnum)^2) / - sum( sum(colSums(smsmWX) * colSums(smsmWY)) ) - Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2)) - Xwer_dist[j, i] <- Xwer_dist[i, j] + #TODO: later, compute CWT here (because not enough storage space for 32M series) + # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C + num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) + WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) + WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) + wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) + Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) + Xwer_dist[j,i] <- Xwer_dist[i,j] } } diag(Xwer_dist) <- numeric(n)