X-Git-Url: https://git.auder.net/?a=blobdiff_plain;f=epclust%2FR%2Fclustering.R;h=b91d512b23b6b1cd82eb4f8689e96ea44448b420;hb=3c5a4b0880db63367a474a568e1322b3999932fe;hp=6090517c6b6464d4c253ba52b8efdf29cb56c823;hpb=0e2dce80a3fddaca50c96c6c27a8b32468095d6c;p=epclust.git diff --git a/epclust/R/clustering.R b/epclust/R/clustering.R index 6090517..b91d512 100644 --- a/epclust/R/clustering.R +++ b/epclust/R/clustering.R @@ -1,104 +1,80 @@ -# Cluster one full task (nb_curves / ntasks series) -clusteringTask = function(indices, ncores) -{ - cl = parallel::makeCluster(ncores) - parallel::clusterExport(cl, - varlist=c("K1","getCoefs"), - envir=environment()) - repeat - { - nb_workers = max( 1, round( length(indices_clust) / nb_series_per_chunk ) ) - indices_workers = lapply(seq_len(nb_workers), function(i) { - upper_bound = ifelse( i 0) + # Iterate clustering algorithm 1 until K1 medoids are found + while (length(indices) > K1) { - curves = computeSynchrones(indices) - dists = computeWerDists(curves) - indices = computeClusters(dists, K2, diss=TRUE) + # Balance tasks by splitting the indices set - as evenly as possible + indices_workers = .splitIndices(indices, nb_items_clust, min_size=K1+1) + if (verbose) + cat(paste("*** [iterated] Clustering task 1 on ",length(indices)," series\n", sep="")) + indices <- + if (parll) + { + unlist( parallel::parLapply(cl, indices_workers, function(inds) { + require("epclust", quietly=TRUE) + inds[ algoClust1(getContribs(inds), K1) ] + }) ) + } + else + { + unlist( lapply(indices_workers, function(inds) + inds[ algoClust1(getContribs(inds), K1) ] + ) ) + } } - if (to_file) - #write results to file (JUST series ; no possible ID here) -} + if (parll) + parallel::stopCluster(cl) -# Compute the synchrones curves (sum of clusters elements) from a clustering result -computeSynchrones = function(inds) - sapply(seq_along(inds), colMeans(getSeries(inds[[i]]$indices,inds[[i]]$ids))) + indices #medoids +} -# Compute the WER distance between the synchrones curves (in columns) -computeWerDist = function(curves) +#' @rdname clustering +#' @export +clusteringTask2 = function(indices, getSeries, K2, algoClust2, nb_series_per_chunk, + nvoice, nbytes, endian, ncores_clust=1, verbose=FALSE, parll=TRUE) { - if (!require("Rwave", quietly=TRUE)) - stop("Unable to load Rwave library") - n <- nrow(curves) - delta <- ncol(curves) - #TODO: automatic tune of all these parameters ? (for other users) - nvoice <- 4 - # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves)) - noctave = 13 - # 4 here represent 2^5 = 32 half-hours ~ 1 day - #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) - scalevector <- 2^(4:(noctave * nvoice) / nvoice) * 2 - #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 - s0=2 - w0=2*pi - scaled=FALSE - s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) - totnoct = noctave + as.integer(s0log/nvoice) + 1 + if (verbose) + cat(paste("*** Clustering task 2 on ",length(indices)," medoids\n", sep="")) - # (normalized) observations node with CWT - Xcwt4 <- lapply(seq_len(n), function(i) { - ts <- scale(ts(curves[,i]), center=TRUE, scale=scaled) - totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0) - ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] - #Normalization - sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) - sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*') - sqres / max(Mod(sqres)) - }) + if (length(indices) <= K2) + return (indices) - Xwer_dist <- matrix(0., n, n) - fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) - for (i in 1:(n-1)) - { - for (j in (i+1):n) - { - #TODO: later, compute CWT here (because not enough storage space for 200k series) - # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C - num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) - WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) - WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) - wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) - Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) - Xwer_dist[j,i] <- Xwer_dist[i,j] - } - } - diag(Xwer_dist) <- numeric(n) - Xwer_dist + # A) Compute the WER distances (Wavelets Extended coefficient of deteRmination) + distances = computeWerDists(indices, getSeries, nb_series_per_chunk, + nvoice, nbytes, endian, ncores_clust, verbose, parll) + + # B) Apply clustering algorithm 2 on the WER distances matrix + if (verbose) + cat(paste("*** algoClust2() on ",nrow(distances)," items\n", sep="")) + indices[ algoClust2(distances,K2) ] }