X-Git-Url: https://git.auder.net/?a=blobdiff_plain;f=epclust%2FR%2Fclustering.R;h=a431ba86e6120aef106fdce8712eb52a5ef3c4b0;hb=9f05a4a0b703deffd7bdb9cd99b0aaa2246a5c83;hp=3993e7685c97b194644d3600ceeea6b7bdac54ac;hpb=24ed5d835e2eebaaa4d5f8296f8d2e2132cc6398;p=epclust.git diff --git a/epclust/R/clustering.R b/epclust/R/clustering.R index 3993e76..a431ba8 100644 --- a/epclust/R/clustering.R +++ b/epclust/R/clustering.R @@ -1,58 +1,59 @@ #' @name clustering #' @rdname clustering -#' @aliases clusteringTask1 computeClusters1 computeClusters2 +#' @aliases clusteringTask1 clusteringTask2 computeClusters1 computeClusters2 #' #' @title Two-stage clustering, withing one task (see \code{claws()}) #' #' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in #' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed -#' through discrete wavelets coefficients). \code{computeClusters1()} and -#' \code{computeClusters2()} correspond to the atomic clustering procedures respectively -#' for stage 1 and 2. The former applies the clustering algorithm (PAM) on a -#' contributions matrix, while the latter clusters a chunk of series inside one task -#' (~max nb_series_per_chunk) +#' through discrete wavelets coefficients). +#' \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones +#' and then WER distances computations, before applying the clustering algorithm. +#' \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic +#' clustering procedures respectively for stage 1 and 2. The former applies the +#' first clustering algorithm on a contributions matrix, while the latter clusters +#' a set of series inside one task (~nb_items_clust1) #' #' @param indices Range of series indices to cluster in parallel (initial data) #' @param getContribs Function to retrieve contributions from initial series indices: #' \code{getContribs(indices)} outpus a contributions matrix -#' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()}) #' @inheritParams computeSynchrones #' @inheritParams claws #' -#' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the -#' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus -#' \code{computeClusters2()} outputs a big.matrix of medoids -#' (of size limited by nb_series_per_chunk) +#' @return For \code{clusteringTask1()}, the indices of the computed (K1) medoids. +#' Indices are irrelevant for stage 2 clustering, thus \code{clusteringTask2()} +#' outputs a big.matrix of medoids (of size LxK2, K2 = final number of clusters) NULL #' @rdname clustering #' @export -clusteringTask1 = function( - indices, getContribs, K1, nb_series_per_chunk, ncores_clust=1, verbose=FALSE, parll=TRUE) +clusteringTask1 = function(indices, getContribs, K1, algoClust1, nb_items_clust1, + ncores_clust=1, verbose=FALSE, parll=TRUE) { - if (verbose) - cat(paste("*** Clustering task on ",length(indices)," lines\n", sep="")) - - wrapComputeClusters1 = function(inds) { - if (parll) - require("epclust", quietly=TRUE) - if (verbose) - cat(paste(" computeClusters1() on ",length(inds)," lines\n", sep="")) - inds[ computeClusters1(getContribs(inds), K1) ] - } - if (parll) { - cl = parallel::makeCluster(ncores_clust) + cl = parallel::makeCluster(ncores_clust, outfile = "") parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment()) } while (length(indices) > K1) { - indices_workers = .spreadIndices(indices, nb_series_per_chunk) - if (parll) - indices = unlist( parallel::parLapply(cl, indices_workers, wrapComputeClusters1) ) - else - indices = unlist( lapply(indices_workers, wrapComputeClusters1) ) + indices_workers = .spreadIndices(indices, nb_items_clust1) + if (verbose) + cat(paste("*** [iterated] Clustering task 1 on ",length(indices)," series\n", sep="")) + indices <- + if (parll) + { + unlist( parallel::parLapply(cl, indices_workers, function(inds) { + require("epclust", quietly=TRUE) + inds[ algoClust1(getContribs(inds), K1) ] + }) ) + } + else + { + unlist( lapply(indices_workers, function(inds) + inds[ algoClust1(getContribs(inds), K1) ] + ) ) + } } if (parll) parallel::stopCluster(cl) @@ -62,19 +63,20 @@ clusteringTask1 = function( #' @rdname clustering #' @export -computeClusters1 = function(contribs, K1) - cluster::pam(contribs, K1, diss=FALSE)$id.med - -#' @rdname clustering -#' @export -computeClusters2 = function(medoids, K2, - getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) +clusteringTask2 = function(medoids, K2, algoClust2, getRefSeries, nb_ref_curves, + nb_series_per_chunk, sync_mean, nbytes,endian,ncores_clust=1,verbose=FALSE,parll=TRUE) { - synchrones = computeSynchrones(medoids, - getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll) - distances = computeWerDists(synchrones, ncores_clust, verbose, parll) - #TODO: if PAM cannot take big.matrix in input, cast it before... (more than OK in RAM) - medoids[ cluster::pam(distances, K2, diss=TRUE)$medoids , ] + if (verbose) + cat(paste("*** Clustering task 2 on ",ncol(medoids)," synchrones\n", sep="")) + + if (ncol(medoids) <= K2) + return (medoids) + synchrones = computeSynchrones(medoids, getRefSeries, nb_ref_curves, + nb_series_per_chunk, sync_mean, ncores_clust, verbose, parll) + distances = computeWerDists(synchrones, nbytes, endian, ncores_clust, verbose, parll) + if (verbose) + cat(paste(" algoClust2() on ",nrow(distances)," items\n", sep="")) + medoids[ ,algoClust2(distances,K2) ] } #' computeSynchrones @@ -88,78 +90,96 @@ computeClusters2 = function(medoids, K2, #' @param nb_ref_curves How many reference series? (This number is known at this stage) #' @inheritParams claws #' -#' @return A big.matrix of size K1 x L where L = data_length +#' @return A big.matrix of size L x K1 where L = length of a serie #' #' @export -computeSynchrones = function(medoids, getRefSeries, - nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) +computeSynchrones = function(medoids, getRefSeries, nb_ref_curves, + nb_series_per_chunk, sync_mean, ncores_clust=1,verbose=FALSE,parll=TRUE) { - - - -#TODO: si parll, getMedoids + serialization, pass only getMedoids to nodes -# --> BOF... chaque node chargera tous les medoids (efficacité) :/ ==> faut que ça tienne en RAM -#au pire :: C-ifier et charger medoids 1 by 1... - - #MIEUX :: medoids DOIT etre une big.matrix partagée ! - computeSynchronesChunk = function(indices) { - if (verbose) - cat(paste("--- Compute synchrones for ",length(indices)," lines\n", sep="")) + if (parll) + { + require("bigmemory", quietly=TRUE) + requireNamespace("synchronicity", quietly=TRUE) + require("epclust", quietly=TRUE) + synchrones <- bigmemory::attach.big.matrix(synchrones_desc) + if (sync_mean) + counts <- bigmemory::attach.big.matrix(counts_desc) + medoids <- bigmemory::attach.big.matrix(medoids_desc) + m <- synchronicity::attach.mutex(m_desc) + } + ref_series = getRefSeries(indices) - #get medoids indices for this chunk of series - for (i in seq_len(nrow(ref_series))) + nb_series = ncol(ref_series) + + # Get medoids indices for this chunk of series + mi = computeMedoidsIndices(medoids@address, ref_series) + + for (i in seq_len(nb_series)) { - j = which.min( rowSums( sweep(medoids, 2, ref_series[i,], '-')^2 ) ) if (parll) synchronicity::lock(m) - synchrones[j,] = synchrones[j,] + ref_series[i,] - counts[j,1] = counts[j,1] + 1 + synchrones[, mi[i] ] = synchrones[, mi[i] ] + ref_series[,i] + if (sync_mean) + counts[ mi[i] ] = counts[ mi[i] ] + 1 if (parll) synchronicity::unlock(m) } } - K = nrow(medoids) + K = ncol(medoids) ; L = nrow(medoids) # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in // # TODO: if size > RAM (not our case), use file-backed big.matrix - synchrones = bigmemory::big.matrix(nrow=K,ncol=ncol(medoids),type="double",init=0.) - counts = bigmemory::big.matrix(nrow=K,ncol=1,type="double",init=0) + synchrones = bigmemory::big.matrix(nrow=L, ncol=K, type="double", init=0.) + if (sync_mean) + counts = bigmemory::big.matrix(nrow=K, ncol=1, type="double", init=0) # synchronicity is only for Linux & MacOS; on Windows: run sequentially parll = (requireNamespace("synchronicity",quietly=TRUE) && parll && Sys.info()['sysname'] != "Windows") - if (parll) - m <- synchronicity::boost.mutex() - if (parll) { + m <- synchronicity::boost.mutex() + m_desc <- synchronicity::describe(m) + synchrones_desc = bigmemory::describe(synchrones) + if (sync_mean) + counts_desc = bigmemory::describe(counts) + medoids_desc = bigmemory::describe(medoids) cl = parallel::makeCluster(ncores_clust) - parallel::clusterExport(cl, - varlist=c("synchrones","counts","verbose","medoids","getRefSeries"), - envir=environment()) + varlist=c("synchrones_desc","sync_mean","m_desc","medoids_desc","getRefSeries") + if (sync_mean) + varlist = c(varlist, "counts_desc") + parallel::clusterExport(cl, varlist, envir=environment()) } + if (verbose) + { + if (verbose) + cat(paste("--- Compute ",K," synchrones with ",nb_ref_curves," series\n", sep="")) + } indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk) ignored <- if (parll) - parallel::parLapply(indices_workers, computeSynchronesChunk) + parallel::parLapply(cl, indices_workers, computeSynchronesChunk) else lapply(indices_workers, computeSynchronesChunk) if (parll) parallel::stopCluster(cl) - #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') ) + if (!sync_mean) + return (synchrones) + + #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 2, counts, '/') ) for (i in seq_len(K)) - synchrones[i,] = synchrones[i,] / counts[i,1] + synchrones[,i] = synchrones[,i] / counts[i] #NOTE: odds for some clusters to be empty? (when series already come from stage 2) # ...maybe; but let's hope resulting K1' be still quite bigger than K2 - noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,]))) + noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[,i]))) if (all(noNA_rows)) return (synchrones) # Else: some clusters are empty, need to slice synchrones - synchrones[noNA_rows,] + bigmemory::as.big.matrix(synchrones[,noNA_rows]) } #' computeWerDists @@ -171,17 +191,11 @@ computeSynchrones = function(medoids, getRefSeries, #' as the series in the initial dataset #' @inheritParams claws #' -#' @return A big.matrix of size K1 x K1 +#' @return A matrix of size K1 x K1 #' #' @export -computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE) +computeWerDists = function(synchrones, nbytes,endian,ncores_clust=1,verbose=FALSE,parll=TRUE) { - - - -#TODO: re-organize to call computeWerDist(x,y) [C] (in //?) from two indices + big.matrix - - n <- nrow(synchrones) delta <- ncol(synchrones) #TODO: automatic tune of all these parameters ? (for other users) @@ -192,106 +206,130 @@ computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE) #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1) #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 - s0=2 - w0=2*pi + s0 = 2 + w0 = 2*pi scaled=FALSE s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) totnoct = noctave + as.integer(s0log/nvoice) + 1 - computeCWT = function(i) + Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") + + cwt_file = ".epclust_bin/cwt" + #TODO: args, nb_per_chunk, nbytes, endian + + # Generate n(n-1)/2 pairs for WER distances computations + pairs = list() + V = seq_len(n) + for (i in 1:n) { - if (verbose) - cat(paste("+++ Compute Rwave::cwt() on serie ",i,"\n", sep="")) - ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled) + V = V[-1] + pairs = c(pairs, lapply(V, function(v) c(i,v))) + } + + computeSaveCWT = function(index) + { + ts <- scale(ts(synchrones[index,]), center=TRUE, scale=scaled) totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE) ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] #Normalization sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) sqres <- sweep(ts.cwt,2,sqs,'*') - sqres / max(Mod(sqres)) + res <- sqres / max(Mod(sqres)) + #TODO: serializer les CWT, les récupérer via getDataInFile ; + #--> OK, faut juste stocker comme séries simples de taille delta*ncol (53*17519) + binarize(c(as.double(Re(res)),as.double(Im(res))), cwt_file, ncol(res), ",", nbytes, endian) } if (parll) { cl = parallel::makeCluster(ncores_clust) - parallel::clusterExport(cl, - varlist=c("synchrones","totnoct","nvoice","w0","s0log","noctave","s0","verbose"), - envir=environment()) + synchrones_desc <- bigmemory::describe(synchrones) + Xwer_dist_desc <- bigmemory::describe(Xwer_dist) + parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct", + "nvoice","w0","s0log","noctave","s0","verbose","getCWT"), envir=environment()) } - - # list of CWT from synchrones - # TODO: fit in RAM, OK? If not, 2 options: serialize, compute individual distances - Xcwt4 <- + + if (verbose) + { + cat(paste("--- Compute WER dists\n", sep="")) + # precompute save all CWT........ + } + #precompute and serialize all CWT + ignored <- if (parll) - parallel::parLapply(cl, seq_len(n), computeCWT) + parallel::parLapply(cl, 1:n, computeSaveCWT) else - lapply(seq_len(n), computeCWT) - - if (parll) - parallel::stopCluster(cl) + lapply(1:n, computeSaveCWT) - Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") - fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) - if (verbose) - cat("*** Compute WER distances from CWT\n") - - #TODO: computeDistances(i,j), et répartir les n(n-1)/2 couples d'indices - #là c'est trop déséquilibré + getCWT = function(index) + { + #from cwt_file ... + res <- getDataInFile(c(2*index-1,2*index), cwt_file, nbytes, endian) + ###############TODO: + } - computeDistancesLineI = function(i) + # Distance between rows i and j + computeDistancesIJ = function(pair) { - if (verbose) - cat(paste(" Line ",i,"\n", sep="")) - for (j in (i+1):n) + if (parll) { - #TODO: 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C - num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) - WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) - WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) - wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) - if (parll) - synchronicity::lock(m) - Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) - Xwer_dist[j,i] <- Xwer_dist[i,j] - if (parll) - synchronicity::unlock(m) + require("bigmemory", quietly=TRUE) + require("epclust", quietly=TRUE) + synchrones <- bigmemory::attach.big.matrix(synchrones_desc) + Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) } + + i = pair[1] ; j = pair[2] + if (verbose && j==i+1) + cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep="")) + cwt_i <- getCWT(i) + cwt_j <- getCWT(j) + + num <- epclustFilter(Mod(cwt_i * Conj(cwt_j))) + WX <- epclustFilter(Mod(cwt_i * Conj(cwt_i))) + WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j))) + wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) + Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * max(1 - wer2, 0.)) #FIXME: wer2 should be < 1 + Xwer_dist[j,i] <- Xwer_dist[i,j] Xwer_dist[i,i] = 0. } - parll = (requireNamespace("synchronicity",quietly=TRUE) - && parll && Sys.info()['sysname'] != "Windows") - if (parll) - m <- synchronicity::boost.mutex() - + if (verbose) + { + cat(paste("--- Compute WER dists\n", sep="")) + } ignored <- if (parll) - { - parallel::mclapply(seq_len(n-1), computeDistancesLineI, - mc.cores=ncores_clust, mc.allow.recursive=FALSE) - } + parallel::parLapply(cl, pairs, computeDistancesIJ) else - lapply(seq_len(n-1), computeDistancesLineI) + lapply(pairs, computeDistancesIJ) + + if (parll) + parallel::stopCluster(cl) + Xwer_dist[n,n] = 0. - Xwer_dist + distances <- Xwer_dist[,] + rm(Xwer_dist) ; gc() + distances #~small matrix K1 x K1 } # Helper function to divide indices into balanced sets -.spreadIndices = function(indices, nb_per_chunk) +.spreadIndices = function(indices, nb_per_set) { L = length(indices) - nb_workers = floor( L / nb_per_chunk ) - if (nb_workers == 0) + nb_workers = floor( L / nb_per_set ) + rem = L %% nb_per_set + if (nb_workers == 0 || (nb_workers==1 && rem==0)) { - # L < nb_series_per_chunk, simple case + # L <= nb_per_set, simple case indices_workers = list(indices) } else { indices_workers = lapply( seq_len(nb_workers), function(i) - indices[(nb_per_chunk*(i-1)+1):(nb_per_chunk*i)] ) + indices[(nb_per_set*(i-1)+1):(nb_per_set*i)] ) # Spread the remaining load among the workers - rem = L %% nb_per_chunk + rem = L %% nb_per_set while (rem > 0) { index = rem%%nb_workers + 1