X-Git-Url: https://git.auder.net/?a=blobdiff_plain;f=epclust%2FR%2Fclustering.R;h=8be871531f22e7a7dfe7b8828744b59f4c058c79;hb=a52836b23adb4bfa6722642ec6426fb7b5f39650;hp=87a5f914e137cb3f509443b58a1e59b80505b011;hpb=3eef8d3df59ded9a281cff51f79fe824198a7427;p=epclust.git diff --git a/epclust/R/clustering.R b/epclust/R/clustering.R index 87a5f91..8be8715 100644 --- a/epclust/R/clustering.R +++ b/epclust/R/clustering.R @@ -1,123 +1,341 @@ -# Cluster one full task (nb_curves / ntasks series) -clusteringTask = function(indices,getSeries,getSeriesForSynchrones,synchrones_file, - getCoefs,K1,K2,nb_series_per_chunk,ncores,to_file,ftype) +#' @name clustering +#' @rdname clustering +#' @aliases clusteringTask1 clusteringTask2 computeClusters1 computeClusters2 +#' +#' @title Two-stage clustering, withing one task (see \code{claws()}) +#' +#' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in +#' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed +#' through discrete wavelets coefficients). +#' \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones +#' and then WER distances computations, before applying the clustering algorithm. +#' \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic +#' clustering procedures respectively for stage 1 and 2. The former applies the +#' first clustering algorithm on a contributions matrix, while the latter clusters +#' a set of series inside one task (~nb_items_clust1) +#' +#' @param indices Range of series indices to cluster in parallel (initial data) +#' @param getContribs Function to retrieve contributions from initial series indices: +#' \code{getContribs(indices)} outpus a contributions matrix +#' @inheritParams computeSynchrones +#' @inheritParams claws +#' +#' @return For \code{clusteringTask1()}, the indices of the computed (K1) medoids. +#' Indices are irrelevant for stage 2 clustering, thus \code{clusteringTask2()} +#' outputs a big.matrix of medoids (of size LxK2, K2 = final number of clusters) +NULL + +#' @rdname clustering +#' @export +clusteringTask1 = function(indices, getContribs, K1, algoClust1, nb_items_clust1, + ncores_clust=1, verbose=FALSE, parll=TRUE) { - cl = parallel::makeCluster(ncores) - repeat + if (parll) + { + cl = parallel::makeCluster(ncores_clust, outfile = "") + parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment()) + } + # Iterate clustering algorithm 1 until K1 medoids are found + while (length(indices) > K1) { - nb_workers = max( 1, round( length(indices) / nb_series_per_chunk ) ) - indices_workers = lapply(seq_len(nb_workers), function(i) { - upper_bound = ifelse( i init vect nul pour chacun, puis incr avec les - #courbes (getSeriesForSynchrones) les plus proches... --> au sens de la norme L2 ? - medoids = getSeries(indices) - K = nrow(medoids) - synchrones = matrix(0, nrow=K, ncol=ncol(medoids)) - counts = rep(0,K) - index = 1 - repeat + n <- ncol(synchrones) + L <- nrow(synchrones) + noctave = ceiling(log2(L)) #min power of 2 to cover serie range + + # Initialize result as a square big.matrix of size 'number of synchrones' + Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") + + # Generate n(n-1)/2 pairs for WER distances computations + pairs = list() + V = seq_len(n) + for (i in 1:n) + { + V = V[-1] + pairs = c(pairs, lapply(V, function(v) c(i,v))) + } + + cwt_file = ".cwt.bin" + # Compute the synchrones[,index] CWT, and store it in the binary file above + computeSaveCWT = function(index) + { + if (parll && !exists(synchrones)) #avoid going here after first call on a worker + { + require("bigmemory", quietly=TRUE) + require("Rwave", quietly=TRUE) + require("epclust", quietly=TRUE) + synchrones <- bigmemory::attach.big.matrix(synchrones_desc) + } + ts <- scale(ts(synchrones[,index]), center=TRUE, scale=FALSE) + ts_cwt = Rwave::cwt(ts, noctave, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE) + + # Serialization + binarize(as.matrix(c(as.double(Re(ts_cwt)),as.double(Im(ts_cwt)))), cwt_file, 1, + ",", nbytes, endian) + } + + if (parll) { - series = getSeriesForSynchrones((index-1)+seq_len(nb_series_per_chunk)) - if (is.null(series)) - break - #get medoids indices for this chunk of series - index = which.min( rowSums( sweep(medoids, 2, series[i,], '-')^2 ) ) - synchrones[index,] = synchrones[index,] + series[i,] - counts[index] = counts[index] + 1 + cl = parallel::makeCluster(ncores_clust) + synchrones_desc <- bigmemory::describe(synchrones) + Xwer_dist_desc <- bigmemory::describe(Xwer_dist) + parallel::clusterExport(cl, varlist=c("parll","synchrones_desc","Xwer_dist_desc", + "noctave","nvoice","verbose","getCWT"), envir=environment()) } - #NOTE: odds for some clusters to be empty? (when series already come from stage 2) - synchrones = sweep(synchrones, 1, counts, '/') + + if (verbose) + cat(paste("--- Precompute and serialize synchrones CWT\n", sep="")) + + ignored <- + if (parll) + parallel::parLapply(cl, 1:n, computeSaveCWT) + else + lapply(1:n, computeSaveCWT) + + # Function to retrieve a synchrone CWT from (binary) file + getSynchroneCWT = function(index, L) + { + flat_cwt <- getDataInFile(index, cwt_file, nbytes, endian) + cwt_length = length(flat_cwt) / 2 + re_part = as.matrix(flat_cwt[1:cwt_length], nrow=L) + im_part = as.matrix(flat_cwt[(cwt_length+1):(2*cwt_length)], nrow=L) + re_part + 1i * im_part + } + + # Compute distance between columns i and j in synchrones + computeDistanceIJ = function(pair) + { + if (parll) + { + # parallel workers start with an empty environment + require("bigmemory", quietly=TRUE) + require("epclust", quietly=TRUE) + synchrones <- bigmemory::attach.big.matrix(synchrones_desc) + Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) + } + + i = pair[1] ; j = pair[2] + if (verbose && j==i+1 && !parll) + cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep="")) + + # Compute CWT of columns i and j in synchrones + L = nrow(synchrones) + cwt_i <- getSynchroneCWT(i, L) + cwt_j <- getSynchroneCWT(j, L) + + # Compute the ratio of integrals formula 5.6 for WER^2 + # in https://arxiv.org/abs/1101.4744v2 §5.3 + num <- filterMA(Mod(cwt_i * Conj(cwt_j))) + WX <- filterMA(Mod(cwt_i * Conj(cwt_i))) + WY <- filterMA(Mod(cwt_j * Conj(cwt_j))) + wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) + + Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * (1 - wer2)) + Xwer_dist[j,i] <- Xwer_dist[i,j] + Xwer_dist[i,i] <- 0. + } + + if (verbose) + cat(paste("--- Compute WER distances\n", sep="")) + + ignored <- + if (parll) + parallel::parLapply(cl, pairs, computeDistanceIJ) + else + lapply(pairs, computeDistanceIJ) + + if (parll) + parallel::stopCluster(cl) + + unlink(cwt_file) + + Xwer_dist[n,n] = 0. + Xwer_dist[,] #~small matrix K1 x K1 } -# Compute the WER distance between the synchrones curves (in rows) -computeWerDist = function(curves) +# Helper function to divide indices into balanced sets +# If max == TRUE, sets sizes cannot exceed nb_per_set +.spreadIndices = function(indices, nb_per_set, max=FALSE) { - if (!require("Rwave", quietly=TRUE)) - stop("Unable to load Rwave library") - n <- nrow(curves) - delta <- ncol(curves) - #TODO: automatic tune of all these parameters ? (for other users) - nvoice <- 4 - # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves)) - noctave = 13 - # 4 here represent 2^5 = 32 half-hours ~ 1 day - #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) - scalevector <- 2^(4:(noctave * nvoice) / nvoice) * 2 - #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 - s0=2 - w0=2*pi - scaled=FALSE - s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) - totnoct = noctave + as.integer(s0log/nvoice) + 1 - - # (normalized) observations node with CWT - Xcwt4 <- lapply(seq_len(n), function(i) { - ts <- scale(ts(curves[i,]), center=TRUE, scale=scaled) - totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0) - ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] - #Normalization - sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) - sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*') - sqres / max(Mod(sqres)) - }) - - Xwer_dist <- matrix(0., n, n) - fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) - for (i in 1:(n-1)) + L = length(indices) + nb_workers = floor( L / nb_per_set ) + rem = L %% nb_per_set + if (nb_workers == 0 || (nb_workers==1 && rem==0)) + { + # L <= nb_per_set, simple case + indices_workers = list(indices) + } + else { - for (j in (i+1):n) + indices_workers = lapply( seq_len(nb_workers), function(i) + indices[(nb_per_set*(i-1)+1):(nb_per_set*i)] ) + + if (max) + { + # Sets are not so well balanced, but size is supposed to be critical + return ( c( indices_workers, if (rem>0) list((L-rem+1):L) else NULL ) ) + } + + # Spread the remaining load among the workers + rem = L %% nb_per_set + while (rem > 0) { - #TODO: later, compute CWT here (because not enough storage space for 200k series) - # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C - num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) - WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) - WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) - wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) - Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) - Xwer_dist[j,i] <- Xwer_dist[i,j] + index = rem%%nb_workers + 1 + indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1]) + rem = rem - 1 } } - diag(Xwer_dist) <- numeric(n) - Xwer_dist + indices_workers }