X-Git-Url: https://git.auder.net/?a=blobdiff_plain;f=epclust%2FR%2Fclustering.R;h=5b5f6684763321b1b854d0cdbc2de6bb2b8ded16;hb=074a48c472fcbdf99a36fae333dd8dbb568c06a0;hp=3993e7685c97b194644d3600ceeea6b7bdac54ac;hpb=24ed5d835e2eebaaa4d5f8296f8d2e2132cc6398;p=epclust.git diff --git a/epclust/R/clustering.R b/epclust/R/clustering.R index 3993e76..5b5f668 100644 --- a/epclust/R/clustering.R +++ b/epclust/R/clustering.R @@ -1,303 +1,94 @@ -#' @name clustering -#' @rdname clustering -#' @aliases clusteringTask1 computeClusters1 computeClusters2 -#' -#' @title Two-stage clustering, withing one task (see \code{claws()}) +#' Two-stage clustering, within one task (see \code{claws()}) #' -#' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in -#' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed -#' through discrete wavelets coefficients). \code{computeClusters1()} and -#' \code{computeClusters2()} correspond to the atomic clustering procedures respectively -#' for stage 1 and 2. The former applies the clustering algorithm (PAM) on a -#' contributions matrix, while the latter clusters a chunk of series inside one task -#' (~max nb_series_per_chunk) +#' \code{clusteringTask1()} runs one full stage-1 task, which consists in iterated +#' clustering on nb_curves / ntasks energy contributions, computed through +#' discrete wavelets coefficients. +#' \code{clusteringTask2()} runs a full stage-2 task, which consists in WER distances +#' computations between medoids (indices) output from stage 1, before applying +#' the second clustering algorithm on the distances matrix. #' -#' @param indices Range of series indices to cluster in parallel (initial data) #' @param getContribs Function to retrieve contributions from initial series indices: -#' \code{getContribs(indices)} outpus a contributions matrix -#' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()}) -#' @inheritParams computeSynchrones +#' \code{getContribs(indices)} outputs a contributions matrix, in columns #' @inheritParams claws +#' @inheritParams computeSynchrones +#' @inheritParams computeWerDists +#' +#' @return The indices of the computed (resp. K1 and K2) medoids. #' -#' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the -#' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus -#' \code{computeClusters2()} outputs a big.matrix of medoids -#' (of size limited by nb_series_per_chunk) +#' @name clustering +#' @rdname clustering +#' @aliases clusteringTask1 clusteringTask2 NULL #' @rdname clustering #' @export -clusteringTask1 = function( - indices, getContribs, K1, nb_series_per_chunk, ncores_clust=1, verbose=FALSE, parll=TRUE) +clusteringTask1 <- function(indices, getContribs, K1, algoClust1, nb_items_clust, + ncores_clust=3, verbose=FALSE) { if (verbose) - cat(paste("*** Clustering task on ",length(indices)," lines\n", sep="")) + cat(paste("*** Clustering task 1 on ",length(indices)," series [start]\n", sep="")) - wrapComputeClusters1 = function(inds) { - if (parll) - require("epclust", quietly=TRUE) - if (verbose) - cat(paste(" computeClusters1() on ",length(inds)," lines\n", sep="")) - inds[ computeClusters1(getContribs(inds), K1) ] - } + if (length(indices) <= K1) + return (indices) + parll <- (ncores_clust > 1) if (parll) { - cl = parallel::makeCluster(ncores_clust) - parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment()) + # outfile=="" to see stderr/stdout on terminal + cl <- + if (verbose) + parallel::makeCluster(ncores_clust, outfile = "") + else + parallel::makeCluster(ncores_clust) + parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment()) } + # Iterate clustering algorithm 1 until K1 medoids are found while (length(indices) > K1) { - indices_workers = .spreadIndices(indices, nb_series_per_chunk) - if (parll) - indices = unlist( parallel::parLapply(cl, indices_workers, wrapComputeClusters1) ) - else - indices = unlist( lapply(indices_workers, wrapComputeClusters1) ) - } - if (parll) - parallel::stopCluster(cl) - - indices #medoids -} - -#' @rdname clustering -#' @export -computeClusters1 = function(contribs, K1) - cluster::pam(contribs, K1, diss=FALSE)$id.med - -#' @rdname clustering -#' @export -computeClusters2 = function(medoids, K2, - getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) -{ - synchrones = computeSynchrones(medoids, - getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll) - distances = computeWerDists(synchrones, ncores_clust, verbose, parll) - #TODO: if PAM cannot take big.matrix in input, cast it before... (more than OK in RAM) - medoids[ cluster::pam(distances, K2, diss=TRUE)$medoids , ] -} - -#' computeSynchrones -#' -#' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids, -#' using L2 distances. -#' -#' @param medoids big.matrix of medoids (curves of same length as initial series) -#' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series -#' have been replaced by stage-1 medoids) -#' @param nb_ref_curves How many reference series? (This number is known at this stage) -#' @inheritParams claws -#' -#' @return A big.matrix of size K1 x L where L = data_length -#' -#' @export -computeSynchrones = function(medoids, getRefSeries, - nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE) -{ - - - -#TODO: si parll, getMedoids + serialization, pass only getMedoids to nodes -# --> BOF... chaque node chargera tous les medoids (efficacité) :/ ==> faut que ça tienne en RAM -#au pire :: C-ifier et charger medoids 1 by 1... - - #MIEUX :: medoids DOIT etre une big.matrix partagée ! - - computeSynchronesChunk = function(indices) - { + # Balance tasks by splitting the indices set - as evenly as possible + indices_workers <- .splitIndices(indices, nb_items_clust, min_size=K1+1) + indices <- + if (parll) + { + unlist( parallel::parLapply(cl, indices_workers, function(inds) { + require("epclust", quietly=TRUE) + inds[ algoClust1(getContribs(inds), K1) ] + }) ) + } + else + { + unlist( lapply(indices_workers, function(inds) + inds[ algoClust1(getContribs(inds), K1) ] + ) ) + } if (verbose) - cat(paste("--- Compute synchrones for ",length(indices)," lines\n", sep="")) - ref_series = getRefSeries(indices) - #get medoids indices for this chunk of series - for (i in seq_len(nrow(ref_series))) { - j = which.min( rowSums( sweep(medoids, 2, ref_series[i,], '-')^2 ) ) - if (parll) - synchronicity::lock(m) - synchrones[j,] = synchrones[j,] + ref_series[i,] - counts[j,1] = counts[j,1] + 1 - if (parll) - synchronicity::unlock(m) + cat(paste("*** Clustering task 1 on ",length(indices)," medoids [iter]\n", sep="")) } } - - K = nrow(medoids) - # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in // - # TODO: if size > RAM (not our case), use file-backed big.matrix - synchrones = bigmemory::big.matrix(nrow=K,ncol=ncol(medoids),type="double",init=0.) - counts = bigmemory::big.matrix(nrow=K,ncol=1,type="double",init=0) - # synchronicity is only for Linux & MacOS; on Windows: run sequentially - parll = (requireNamespace("synchronicity",quietly=TRUE) - && parll && Sys.info()['sysname'] != "Windows") - if (parll) - m <- synchronicity::boost.mutex() - - if (parll) - { - cl = parallel::makeCluster(ncores_clust) - parallel::clusterExport(cl, - varlist=c("synchrones","counts","verbose","medoids","getRefSeries"), - envir=environment()) - } - - indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk) - ignored <- - if (parll) - parallel::parLapply(indices_workers, computeSynchronesChunk) - else - lapply(indices_workers, computeSynchronesChunk) - if (parll) parallel::stopCluster(cl) - #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') ) - for (i in seq_len(K)) - synchrones[i,] = synchrones[i,] / counts[i,1] - #NOTE: odds for some clusters to be empty? (when series already come from stage 2) - # ...maybe; but let's hope resulting K1' be still quite bigger than K2 - noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,]))) - if (all(noNA_rows)) - return (synchrones) - # Else: some clusters are empty, need to slice synchrones - synchrones[noNA_rows,] + indices #medoids } -#' computeWerDists -#' -#' Compute the WER distances between the synchrones curves (in rows), which are -#' returned (e.g.) by \code{computeSynchrones()} -#' -#' @param synchrones A big.matrix of synchrones, in rows. The series have same length -#' as the series in the initial dataset -#' @inheritParams claws -#' -#' @return A big.matrix of size K1 x K1 -#' +#' @rdname clustering #' @export -computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE) +clusteringTask2 <- function(indices, getSeries, K2, algoClust2, nb_series_per_chunk, + smooth_lvl, nvoice, nbytes, endian, ncores_clust=3, verbose=FALSE) { - - - -#TODO: re-organize to call computeWerDist(x,y) [C] (in //?) from two indices + big.matrix - - - n <- nrow(synchrones) - delta <- ncol(synchrones) - #TODO: automatic tune of all these parameters ? (for other users) - nvoice <- 4 - # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones)) - noctave = 13 - # 4 here represent 2^5 = 32 half-hours ~ 1 day - #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) - scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1) - #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 - s0=2 - w0=2*pi - scaled=FALSE - s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) - totnoct = noctave + as.integer(s0log/nvoice) + 1 - - computeCWT = function(i) - { - if (verbose) - cat(paste("+++ Compute Rwave::cwt() on serie ",i,"\n", sep="")) - ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled) - totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE) - ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] - #Normalization - sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) - sqres <- sweep(ts.cwt,2,sqs,'*') - sqres / max(Mod(sqres)) - } - - if (parll) - { - cl = parallel::makeCluster(ncores_clust) - parallel::clusterExport(cl, - varlist=c("synchrones","totnoct","nvoice","w0","s0log","noctave","s0","verbose"), - envir=environment()) - } - - # list of CWT from synchrones - # TODO: fit in RAM, OK? If not, 2 options: serialize, compute individual distances - Xcwt4 <- - if (parll) - parallel::parLapply(cl, seq_len(n), computeCWT) - else - lapply(seq_len(n), computeCWT) - - if (parll) - parallel::stopCluster(cl) - - Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") - fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) if (verbose) - cat("*** Compute WER distances from CWT\n") - - #TODO: computeDistances(i,j), et répartir les n(n-1)/2 couples d'indices - #là c'est trop déséquilibré + cat(paste("*** Clustering task 2 on ",length(indices)," medoids\n", sep="")) - computeDistancesLineI = function(i) - { - if (verbose) - cat(paste(" Line ",i,"\n", sep="")) - for (j in (i+1):n) - { - #TODO: 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C - num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) - WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) - WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) - wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) - if (parll) - synchronicity::lock(m) - Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) - Xwer_dist[j,i] <- Xwer_dist[i,j] - if (parll) - synchronicity::unlock(m) - } - Xwer_dist[i,i] = 0. - } + if (length(indices) <= K2) + return (indices) - parll = (requireNamespace("synchronicity",quietly=TRUE) - && parll && Sys.info()['sysname'] != "Windows") - if (parll) - m <- synchronicity::boost.mutex() + # A) Compute the WER distances (Wavelets Extended coefficient of deteRmination) + distances <- computeWerDists(indices, getSeries, nb_series_per_chunk, + smooth_lvl, nvoice, nbytes, endian, ncores_clust, verbose) - ignored <- - if (parll) - { - parallel::mclapply(seq_len(n-1), computeDistancesLineI, - mc.cores=ncores_clust, mc.allow.recursive=FALSE) - } - else - lapply(seq_len(n-1), computeDistancesLineI) - Xwer_dist[n,n] = 0. - Xwer_dist -} - -# Helper function to divide indices into balanced sets -.spreadIndices = function(indices, nb_per_chunk) -{ - L = length(indices) - nb_workers = floor( L / nb_per_chunk ) - if (nb_workers == 0) - { - # L < nb_series_per_chunk, simple case - indices_workers = list(indices) - } - else - { - indices_workers = lapply( seq_len(nb_workers), function(i) - indices[(nb_per_chunk*(i-1)+1):(nb_per_chunk*i)] ) - # Spread the remaining load among the workers - rem = L %% nb_per_chunk - while (rem > 0) - { - index = rem%%nb_workers + 1 - indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1]) - rem = rem - 1 - } - } - indices_workers + # B) Apply clustering algorithm 2 on the WER distances matrix + if (verbose) + cat(paste("*** algoClust2() on ",nrow(distances)," items\n", sep="")) + indices[ algoClust2(distances,K2) ] }