X-Git-Url: https://git.auder.net/?a=blobdiff_plain;f=R%2FinitSmallEM.R;h=8cfb7e87c2fe65638e639c2b188a8bff0a00d4ab;hb=f2a9120810d7e1e423c7b5c2c4320f4e27221f50;hp=8f3c86b59baa01acab04c7042c6518c16339418c;hpb=493a35bfea6d1210c94ced8fbfe3e572f0389ea5;p=valse.git diff --git a/R/initSmallEM.R b/R/initSmallEM.R index 8f3c86b..8cfb7e8 100644 --- a/R/initSmallEM.R +++ b/R/initSmallEM.R @@ -1,27 +1,18 @@ -library(MASS) #generalized inverse of matrix Monroe-Penrose - -vec_bin = function(X,r){ - Z = c() - indice = c() - j=1 - for(i in 1:length(X)){ - if(X[i] == r){ - Z[i] = 1 - indice[j] = i - j=j+1 - } - else{ - Z[i] = 0 - } - } - return(list(Z,indice)) -} - -initSmallEM = function(k,X,Y,tau){ +#' initialization of the EM algorithm +#' +#' @param k number of components +#' @param X matrix of covariates (of size n*p) +#' @param Y matrix of responses (of size n*m) +#' @param tau threshold to stop EM algorithm +#' +#' @return a list with phiInit, rhoInit, piInit, gamInit +#' @export +initSmallEM = function(k,X,Y,tau) +{ n = nrow(Y) m = ncol(Y) p = ncol(X) - + betaInit1 = array(0, dim=c(p,m,k,20)) sigmaInit1 = array(0, dim = c(m,m,k,20)) phiInit1 = array(0, dim = c(p,m,k,20)) @@ -30,28 +21,34 @@ initSmallEM = function(k,X,Y,tau){ gamInit1 = array(0, dim=c(n,k,20)) LLFinit1 = list() - - for(repet in 1:20){ - clusters = hclust(dist(y)) #default distance : euclidean - clusterCut = cutree(clusters,k) - Zinit1[,repet] = clusterCut #retourne les indices (à quel cluster indiv_i appartient) d'un clustering hierarchique (nb de cluster = k) + require(MASS) #Moore-Penrose generalized inverse of matrix + require(mclust) # K-means with selection of K + for(repet in 1:20) + { + clusters = Mclust(matrix(c(X,Y),nrow=n),k) #default distance : euclidean + Zinit1[,repet] = clusters$classification - for(r in 1:k){ + for(r in 1:k) + { Z = Zinit1[,repet] Z_bin = vec_bin(Z,r) - Z_vec = Z_bin[[1]] #vecteur 0 et 1 aux endroits où Z==r - Z_indice = Z_bin[[2]] #renvoit les indices où Z==r + Z_vec = Z_bin$Z #vecteur 0 et 1 aux endroits o? Z==r + Z_indice = Z_bin$indice #renvoit les indices o? Z==r - betaInit1[,,r,repet] = ginv(t(x[Z_indice,])%*%x[Z_indice,])%*%t(x[Z_indice,])%*%y[Z_indice,] + betaInit1[,,r,repet] = + ginv(t(x[Z_indice,])%*%x[Z_indice,])%*%t(x[Z_indice,])%*%y[Z_indice,] sigmaInit1[,,r,repet] = diag(m) phiInit1[,,r,repet] = betaInit1[,,r,repet]/sigmaInit1[,,r,repet] rhoInit1[,,r,repet] = solve(sigmaInit1[,,r,repet]) piInit1[repet,r] = sum(Z_vec)/n } - for(i in 1:n){ - for(r in 1:k){ - dotProduct = (y[i,]%*%rhoInit1[,,r,repet]-x[i,]%*%phiInit1[,,r,repet]) %*% (y[i,]%*%rhoInit1[,,r,repet]-x[i,]%*%phiInit1[,,r,repet]) + for(i in 1:n) + { + for(r in 1:k) + { + dotProduct = (y[i,]%*%rhoInit1[,,r,repet]-x[i,]%*%phiInit1[,,r,repet]) %*% + (y[i,]%*%rhoInit1[,,r,repet]-x[i,]%*%phiInit1[,,r,repet]) Gam[i,r] = piInit1[repet,r]*det(rhoInit1[,,r,repet])*exp(-0.5*dotProduct) } sumGamI = sum(gam[i,]) @@ -61,20 +58,17 @@ initSmallEM = function(k,X,Y,tau){ miniInit = 10 maxiInit = 11 - new_EMG = EMGLLF(phiInit1[,,,repet],rhoInit1[,,,repet],piInit1[repet,],gamInit1[,,repet],miniInit,maxiInit,1,0,x,y,tau) - ##.C("EMGLLF", phiInit = phiInit, rhoInit = rhoInit, ...) - LLFEessai = new_EMG[[4]] - LLFinit1[[repet]] = LLFEessai[[length(LLFEessai)]] + new_EMG = .Call("EMGLLF",phiInit1[,,,repet],rhoInit1[,,,repet],piInit1[repet,], + gamInit1[,,repet],miniInit,maxiInit,1,0,x,y,tau) + LLFEessai = new_EMG$LLF + LLFinit1[repet] = LLFEessai[length(LLFEessai)] } b = which.max(LLFinit1) - phiInit = phiInit1[,,,b] rhoInit = rhoInit1[,,,b] piInit = piInit1[b,] gamInit = gamInit1[,,b] - return(list(phiInit, rhoInit, piInit, gamInit)) + return (list(phiInit=phiInit, rhoInit=rhoInit, piInit=piInit, gamInit=gamInit)) } - -