X-Git-Url: https://git.auder.net/?a=blobdiff_plain;f=R%2FgridLambda.R;h=35c412a8282068722fde6255cd4180a4b4ddfc24;hb=f227455a1604906b255ef366d64c10a93e796983;hp=7b82f6316cc3f0f323fe220fbece4fc13a787d73;hpb=d1531659214edd6eaef0ac9ec835455614bba16c;p=valse.git diff --git a/R/gridLambda.R b/R/gridLambda.R index 7b82f63..35c412a 100644 --- a/R/gridLambda.R +++ b/R/gridLambda.R @@ -1,31 +1,34 @@ #' Construct the data-driven grid for the regularization parameters used for the Lasso estimator #' @param phiInit value for phi -#' @param rhoInt value for rho -#' @param piInit value for pi +#' @param rhoInit value for rho +#' @param piInit value for pi #' @param gamInit value for gamma -#' @param mini minimum number of iterations in EM algorithm -#' @param maxi maximum number of iterations in EM algorithm -#' @param tau threshold to stop EM algorithm +#' @param X matrix of covariates (of size n*p) +#' @param Y matrix of responses (of size n*m) +#' @param gamma power of weights in the penalty +#' @param mini minimum number of iterations in EM algorithm +#' @param maxi maximum number of iterations in EM algorithm +#' @param tau threshold to stop EM algorithm #' @return the grid of regularization parameters #' @export #----------------------------------------------------------------------- gridLambda = function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, tau) { - n = nrow(X) - p = dim(phiInit)[1] - m = dim(phiInit)[2] - k = dim(phiInit)[3] - - list_EMG = .Call("EMGLLF",phiInit,rhoInit,piInit,gamInit,mini,maxi,1,0,X,Y,tau) - - grid = array(0, dim=c(p,m,k)) - for (i in 1:p) - { - for (j in 1:m) - grid[i,j,] = abs(list_EMG$S[i,j,]) / (n*list_EMG$pi^gamma) - } - grid = unique(grid) - grid = grid[grid <=1] - - return(grid) + n = nrow(X) + p = dim(phiInit)[1] + m = dim(phiInit)[2] + k = dim(phiInit)[3] + + #list_EMG = .Call("EMGLLF_core",phiInit,rhoInit,piInit,gamInit,mini,maxi,1,0,X,Y,tau) + list_EMG = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,1,0,X,Y,tau) + grid = array(0, dim=c(p,m,k)) + for (i in 1:p) + { + for (j in 1:m) + grid[i,j,] = abs(list_EMG$S[i,j,]) / (n*list_EMG$pi^gamma) + } + grid = unique(grid) + grid = grid[grid <=1] + + return(grid) }