9d1e3fbb84c8fb6e451e1ba08a3c57b7d6906d1f
[talweg.git] / pkg / R / F_Neighbors.R
1 #' Neighbors Forecaster
2 #'
3 #' Predict next serie as a weighted combination of curves observed on "similar" days in
4 #' the past (and future if 'opera'=FALSE); the nature of the similarity is controlled by
5 #' the options 'simtype' and 'local' (see below).
6 #'
7 #' Optional arguments:
8 #' \itemize{
9 #' \item local: TRUE (default) to constrain neighbors to be "same days in same season"
10 #' \item simtype: 'endo' for a similarity based on the series only,<cr>
11 #' 'exo' for a similarity based on exogenous variables only,<cr>
12 #' 'mix' for the product of 'endo' and 'exo',<cr>
13 #' 'none' (default) to apply a simple average: no computed weights
14 #' \item window: A window for similarities computations; override cross-validation
15 #' window estimation.
16 #' }
17 #' The method is summarized as follows:
18 #' \enumerate{
19 #' \item Determine N (=20) recent days without missing values, and preceded by a
20 #' curve also without missing values.
21 #' \item Optimize the window parameters (if relevant) on the N chosen days.
22 #' \item Considering the optimized window, compute the neighbors (with locality
23 #' constraint or not), compute their similarities -- using a gaussian kernel if
24 #' simtype != "none" -- and average accordingly the "tomorrows of neigbors" to
25 #' obtain the final prediction.
26 #' }
27 #'
28 #' @usage # NeighborsForecaster$new(pjump)
29 #'
30 #' @docType class
31 #' @format R6 class, inherits Forecaster
32 #' @aliases F_Neighbors
33 #'
34 NeighborsForecaster = R6::R6Class("NeighborsForecaster",
35 inherit = Forecaster,
36
37 public = list(
38 predictShape = function(data, today, memory, predict_from, horizon, ...)
39 {
40 # (re)initialize computed parameters
41 private$.params <- list("weights"=NA, "indices"=NA, "window"=NA)
42
43 # Do not forecast on days with NAs (TODO: softer condition...)
44 if (any(is.na(data$getSerie(today-1))) ||
45 (predict_from>=2 && any(is.na(data$getSerie(today)[1:(predict_from-1)]))))
46 {
47 return (NA)
48 }
49
50 # Get optional args
51 local = ifelse(hasArg("local"), list(...)$local, TRUE) #same level + season?
52 simtype = ifelse(hasArg("simtype"), list(...)$simtype, "none") #or "endo", or "exo"
53 opera = ifelse(hasArg("opera"), list(...)$opera, FALSE) #operational mode?
54
55 # Determine indices of no-NAs days preceded by no-NAs yerstedays
56 tdays = .getNoNA2(data, max(today-memory,2), ifelse(opera,today-1,data$getSize()))
57 if (!opera)
58 tdays = setdiff(tdays, today) #always exclude current day
59
60 # Shortcut if window is known or local==TRUE && simtype==none
61 if (hasArg("window") || (local && simtype=="none"))
62 {
63 return ( private$.predictShapeAux(data, tdays, today, predict_from, horizon,
64 local, list(...)$window, simtype, opera, TRUE) )
65 }
66
67 # Indices of similar days for cross-validation; TODO: 20 = magic number
68 cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE,
69 days_in=tdays, operational=opera)
70
71 # Optimize h : h |--> sum of prediction errors on last N "similar" days
72 errorOnLastNdays = function(window, simtype)
73 {
74 error = 0
75 nb_jours = 0
76 for (i in seq_along(cv_days))
77 {
78 # mix_strategy is never used here (simtype != "mix"), therefore left blank
79 prediction = private$.predictShapeAux(data, tdays, cv_days[i], predict_from,
80 horizon, local, window, simtype, opera, FALSE)
81 if (!is.na(prediction[1]))
82 {
83 nb_jours = nb_jours + 1
84 error = error +
85 mean((data$getSerie(cv_days[i])[predict_from:horizon] - prediction)^2)
86 }
87 }
88 return (error / nb_jours)
89 }
90
91 # TODO: 7 == magic number
92 if (simtype=="endo" || simtype=="mix")
93 {
94 best_window_endo = optimize(
95 errorOnLastNdays, c(0,7), simtype="endo")$minimum
96 }
97 if (simtype=="exo" || simtype=="mix")
98 {
99 best_window_exo = optimize(
100 errorOnLastNdays, c(0,7), simtype="exo")$minimum
101 }
102
103 best_window =
104 if (simtype == "endo")
105 best_window_endo
106 else if (simtype == "exo")
107 best_window_exo
108 else if (simtype == "mix")
109 c(best_window_endo,best_window_exo)
110 else #none: value doesn't matter
111 1
112
113 return( private$.predictShapeAux(data, tdays, today, predict_from, horizon, local,
114 best_window, simtype, opera, TRUE) )
115 }
116 ),
117 private = list(
118 # Precondition: "yersteday until predict_from-1" is full (no NAs)
119 .predictShapeAux = function(data, tdays, today, predict_from, horizon, local, window,
120 simtype, opera, final_call)
121 {
122 tdays_cut = tdays[ tdays != today ]
123 if (length(tdays_cut) == 0)
124 return (NA)
125
126 if (local)
127 {
128 # limit=Inf to not censor any day (TODO: finite limit? 60?)
129 tdays = getSimilarDaysIndices(today, data, limit=Inf, same_season=TRUE,
130 days_in=tdays_cut, operational=opera)
131 # if (length(tdays) <= 1)
132 # return (NA)
133 # TODO: 10 == magic number
134 tdays = .getConstrainedNeighbs(today, data, tdays, min_neighbs=10)
135 if (length(tdays) == 1)
136 {
137 if (final_call)
138 {
139 private$.params$weights <- 1
140 private$.params$indices <- tdays
141 private$.params$window <- 1
142 }
143 return ( data$getSerie(tdays[1])[predict_from:horizon] )
144 }
145 max_neighbs = 10 #TODO: 12 = arbitrary number
146 if (length(tdays) > max_neighbs)
147 {
148 distances2 <- .computeDistsEndo(data, today, tdays, predict_from)
149 ordering <- order(distances2)
150 tdays <- tdays[ ordering[1:max_neighbs] ]
151 }
152 }
153 else
154 tdays = tdays_cut #no conditioning
155
156 if (simtype == "endo" || simtype == "mix")
157 {
158 # Compute endogen similarities using given window
159 window_endo = ifelse(simtype=="mix", window[1], window)
160
161 # Distances from last observed day to selected days in the past
162 # TODO: redundant computation if local==TRUE
163 distances2 <- .computeDistsEndo(data, today, tdays, predict_from)
164
165 simils_endo <- .computeSimils(distances2, window_endo)
166 }
167
168 if (simtype == "exo" || simtype == "mix")
169 {
170 # Compute exogen similarities using given window
171 window_exo = ifelse(simtype=="mix", window[2], window)
172
173 distances2 <- .computeDistsExo(data, today, tdays)
174
175 simils_exo <- .computeSimils(distances2, window_exo)
176 }
177
178 similarities =
179 if (simtype == "exo")
180 simils_exo
181 else if (simtype == "endo")
182 simils_endo
183 else if (simtype == "mix")
184 simils_endo * simils_exo
185 else #none
186 rep(1, length(tdays))
187 similarities = similarities / sum(similarities)
188
189 prediction = rep(0, horizon-predict_from+1)
190 for (i in seq_along(tdays))
191 {
192 prediction = prediction +
193 similarities[i] * data$getSerie(tdays[i])[predict_from:horizon]
194 }
195
196 if (final_call)
197 {
198 private$.params$weights <- similarities
199 private$.params$indices <- tdays
200 private$.params$window <-
201 if (simtype=="endo")
202 window_endo
203 else if (simtype=="exo")
204 window_exo
205 else if (simtype=="mix")
206 c(window_endo,window_exo)
207 else #none
208 1
209 }
210
211 return (prediction)
212 }
213 )
214 )
215
216 # getConstrainedNeighbs
217 #
218 # Get indices of neighbors of similar pollution level (among same season + day type).
219 #
220 # @param today Index of current day
221 # @param data Object of class Data
222 # @param tdays Current set of "second days" (no-NA pairs)
223 # @param min_neighbs Minimum number of points in a neighborhood
224 # @param max_neighbs Maximum number of points in a neighborhood
225 #
226 .getConstrainedNeighbs = function(today, data, tdays, min_neighbs=10)
227 {
228 levelToday = data$getLevelHat(today)
229 # levelYersteday = data$getLevel(today-1)
230 distances = sapply(tdays, function(i) {
231 # sqrt((data$getLevel(i-1)-levelYersteday)^2 + (data$getLevel(i)-levelToday)^2)
232 abs(data$getLevel(i)-levelToday)
233 })
234 #TODO: 1, +1, +3 : magic numbers
235 dist_thresh = 1
236 min_neighbs = min(min_neighbs,length(tdays))
237 repeat
238 {
239 same_pollution = (distances <= dist_thresh)
240 nb_neighbs = sum(same_pollution)
241 if (nb_neighbs >= min_neighbs) #will eventually happen
242 break
243 dist_thresh = dist_thresh + ifelse(dist_thresh>1,3,1)
244 }
245 tdays = tdays[same_pollution]
246 # max_neighbs = 12
247 # if (nb_neighbs > max_neighbs)
248 # {
249 # # Keep only max_neighbs closest neighbors
250 # tdays = tdays[ order(distances[same_pollution])[1:max_neighbs] ]
251 # }
252 tdays
253 }
254
255 # compute similarities
256 #
257 # Apply the gaussian kernel on computed squared distances.
258 #
259 # @param distances2 Squared distances
260 # @param window Window parameter for the kernel
261 #
262 .computeSimils <- function(distances2, window)
263 {
264 sd_dist = sd(distances2)
265 if (sd_dist < .25 * sqrt(.Machine$double.eps))
266 {
267 # warning("All computed distances are very close: stdev too small")
268 sd_dist = 1 #mostly for tests... FIXME:
269 }
270 exp(-distances2/(sd_dist*window^2))
271 }
272
273 .computeDistsEndo <- function(data, today, tdays, predict_from)
274 {
275 lastSerie = c( data$getSerie(today-1),
276 data$getSerie(today)[if (predict_from>=2) 1:(predict_from-1) else c()] )
277 sapply(tdays, function(i) {
278 delta = lastSerie - c(data$getSerie(i-1),
279 data$getSerie(i)[if (predict_from>=2) 1:(predict_from-1) else c()])
280 # sqrt(mean(delta^2))
281 sqrt(sum(delta^2))
282 })
283 }
284
285 .computeDistsExo <- function(data, today, tdays)
286 {
287 M = matrix( ncol=1+length(tdays), nrow=1+length(data$getExo(1)) )
288 M[,1] = c( data$getLevelHat(today), as.double(data$getExoHat(today)) )
289 for (i in seq_along(tdays))
290 M[,i+1] = c( data$getLevel(tdays[i]), as.double(data$getExo(tdays[i])) )
291
292 sigma = cov(t(M)) #NOTE: robust covariance is way too slow
293 # TODO: 10 == magic number; more robust way == det, or always ginv()
294 sigma_inv =
295 if (length(tdays) > 10)
296 solve(sigma)
297 else
298 MASS::ginv(sigma)
299
300 # Distances from last observed day to days in the past
301 sapply(seq_along(tdays), function(i) {
302 delta = M[,1] - M[,i+1]
303 delta %*% sigma_inv %*% delta
304 })
305 }