From 228ee602a972fcac6177db0d539bf9d0c5fa477f Mon Sep 17 00:00:00 2001
From: emilie <emilie@devijver.org>
Date: Fri, 21 Apr 2017 15:58:12 +0200
Subject: [PATCH] essai fusion

---
 pkg/DESCRIPTION                      |  42 +++
 pkg/LICENSE                          |  23 ++
 pkg/R/A_NAMESPACE.R                  |  16 ++
 pkg/R/EMGLLF.R                       | 194 +++++++++++++
 pkg/R/EMGrank.R                      | 120 ++++++++
 pkg/R/computeGridLambda.R            |  36 +++
 pkg/R/constructionModelesLassoMLE.R  | 111 ++++++++
 pkg/R/constructionModelesLassoRank.R |  95 ++++++
 pkg/R/generateXY.R                   |  39 +++
 pkg/R/initSmallEM.R                  |  79 +++++
 pkg/R/main.R                         | 161 +++++++++++
 pkg/R/plot_valse.R                   |  89 ++++++
 pkg/R/selectVariables.R              |  81 ++++++
 pkg/R/util.R                         |   7 +
 pkg/data/data.RData                  | Bin 0 -> 1010 bytes
 pkg/data/data2.RData                 | Bin 0 -> 18385 bytes
 pkg/data/script_data.R               |  15 +
 pkg/inst/testdata/TODO.csv           |   1 +
 pkg/man/valse-package.Rd             |  37 +++
 pkg/src/Makevars                     |  11 +
 pkg/src/adapters/a.EMGLLF.c          |  91 ++++++
 pkg/src/adapters/a.EMGrank.c         |  73 +++++
 pkg/src/sources/EMGLLF.c             | 412 +++++++++++++++++++++++++++
 pkg/src/sources/EMGLLF.h             |  32 +++
 pkg/src/sources/EMGrank.c            | 307 ++++++++++++++++++++
 pkg/src/sources/EMGrank.h            |  25 ++
 pkg/src/sources/utils.h              |  48 ++++
 pkg/tests/testthat.R                 |   4 +
 pkg/tests/testthat/helper-context1.R |   5 +
 pkg/tests/testthat/test-context1.R   |  11 +
 pkg/vignettes/.gitignore             |  14 +
 31 files changed, 2179 insertions(+)
 create mode 100644 pkg/DESCRIPTION
 create mode 100644 pkg/LICENSE
 create mode 100644 pkg/R/A_NAMESPACE.R
 create mode 100644 pkg/R/EMGLLF.R
 create mode 100644 pkg/R/EMGrank.R
 create mode 100644 pkg/R/computeGridLambda.R
 create mode 100644 pkg/R/constructionModelesLassoMLE.R
 create mode 100644 pkg/R/constructionModelesLassoRank.R
 create mode 100644 pkg/R/generateXY.R
 create mode 100644 pkg/R/initSmallEM.R
 create mode 100644 pkg/R/main.R
 create mode 100644 pkg/R/plot_valse.R
 create mode 100644 pkg/R/selectVariables.R
 create mode 100644 pkg/R/util.R
 create mode 100644 pkg/data/data.RData
 create mode 100644 pkg/data/data2.RData
 create mode 100644 pkg/data/script_data.R
 create mode 100644 pkg/inst/testdata/TODO.csv
 create mode 100644 pkg/man/valse-package.Rd
 create mode 100644 pkg/src/Makevars
 create mode 100644 pkg/src/adapters/a.EMGLLF.c
 create mode 100644 pkg/src/adapters/a.EMGrank.c
 create mode 100644 pkg/src/sources/EMGLLF.c
 create mode 100644 pkg/src/sources/EMGLLF.h
 create mode 100644 pkg/src/sources/EMGrank.c
 create mode 100644 pkg/src/sources/EMGrank.h
 create mode 100644 pkg/src/sources/utils.h
 create mode 100644 pkg/tests/testthat.R
 create mode 100644 pkg/tests/testthat/helper-context1.R
 create mode 100644 pkg/tests/testthat/test-context1.R
 create mode 100644 pkg/vignettes/.gitignore

diff --git a/pkg/DESCRIPTION b/pkg/DESCRIPTION
new file mode 100644
index 0000000..3b33e25
--- /dev/null
+++ b/pkg/DESCRIPTION
@@ -0,0 +1,42 @@
+Package: valse
+Title: Variable Selection With Mixture Of Models
+Date: 2016-12-01
+Version: 0.1-0
+Description: Two methods are implemented to cluster data with finite mixture
+    regression models. Those procedures deal with high-dimensional covariates and
+    responses through a variable selection procedure based on the Lasso estimator.
+    A low-rank constraint could be added, computed for the Lasso-Rank procedure.
+    A collection of models is constructed, varying the level of sparsity and the
+    number of clusters, and a model is selected using a model selection criterion
+    (slope heuristic, BIC or AIC). Details of the procedure are provided in 'Model-
+    based clustering for high-dimensional data. Application to functional data' by
+    Emilie Devijver, published in Advances in Data Analysis and Clustering (2016).
+Author: Benjamin Auder <Benjamin.Auder@math.u-psud.fr> [aut,cre],
+    Emilie Devijver <Emilie.Devijver@kuleuven.be> [aut],
+    Benjamin Goehry <Benjamin.Goehry@math.u-psud.fr> [aut]
+Maintainer: Benjamin Auder <Benjamin.Auder@math.u-psud.fr>
+Depends:
+    R (>= 3.0.0)
+Imports:
+    MASS,
+    parallel
+Suggests:
+    capushe,
+    roxygen2,
+    testhat
+URL: http://git.auder.net/?p=valse.git
+License: MIT + file LICENSE
+RoxygenNote: 5.0.1
+Collate:
+    'plot_valse.R'
+    'main.R'
+    'selectVariables.R'
+    'constructionModelesLassoRank.R'
+    'constructionModelesLassoMLE.R'
+    'computeGridLambda.R'
+    'initSmallEM.R'
+    'EMGrank.R'
+    'EMGLLF.R'
+    'generateXY.R'
+    'A_NAMESPACE.R'
+    'util.R'
diff --git a/pkg/LICENSE b/pkg/LICENSE
new file mode 100644
index 0000000..a212458
--- /dev/null
+++ b/pkg/LICENSE
@@ -0,0 +1,23 @@
+Copyright (c)
+  2014-2017, Benjamin Auder
+	2014-2017, Emilie Devijver
+	2016-2017, Benjamin Goehry
+
+Permission is hereby granted, free of charge, to any person obtaining
+a copy of this software and associated documentation files (the
+"Software"), to deal in the Software without restriction, including
+without limitation the rights to use, copy, modify, merge, publish,
+distribute, sublicense, and/or sell copies of the Software, and to
+permit persons to whom the Software is furnished to do so, subject to
+the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
diff --git a/pkg/R/A_NAMESPACE.R b/pkg/R/A_NAMESPACE.R
new file mode 100644
index 0000000..8e1783e
--- /dev/null
+++ b/pkg/R/A_NAMESPACE.R
@@ -0,0 +1,16 @@
+#' @include generateXY.R
+#' @include EMGLLF.R
+#' @include EMGrank.R
+#' @include initSmallEM.R
+#' @include computeGridLambda.R
+#' @include constructionModelesLassoMLE.R
+#' @include constructionModelesLassoRank.R
+#' @include selectVariables.R
+#' @include main.R
+#' @include plot_valse.R
+#'
+#' @useDynLib valse
+#'
+#' @importFrom parallel makeCluster parLapply stopCluster clusterExport
+#' @importFrom MASS ginv
+NULL
diff --git a/pkg/R/EMGLLF.R b/pkg/R/EMGLLF.R
new file mode 100644
index 0000000..bf4476b
--- /dev/null
+++ b/pkg/R/EMGLLF.R
@@ -0,0 +1,194 @@
+#' EMGLLF 
+#'
+#' Description de EMGLLF
+#'
+#' @param phiInit an initialization for phi
+#' @param rhoInit an initialization for rho
+#' @param piInit an initialization for pi
+#' @param gamInit initialization for the a posteriori probabilities
+#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
+#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
+#' @param gamma integer for the power in the penaly, by default = 1
+#' @param lambda regularization parameter in the Lasso estimation
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
+#'
+#' @return A list ... phi,rho,pi,LLF,S,affec:
+#'   phi : parametre de moyenne renormalisé, calculé par l'EM
+#'   rho : parametre de variance renormalisé, calculé par l'EM
+#'   pi : parametre des proportions renormalisé, calculé par l'EM
+#'   LLF : log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres
+#'   S : ... affec : ...
+#'
+#' @export
+EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+  X, Y, eps, fast)
+{
+  if (!fast)
+  {
+    # Function in R
+    return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+      X, Y, eps))
+  }
+
+  # Function in C
+  n <- nrow(X)  #nombre d'echantillons
+  p <- ncol(X)  #nombre de covariables
+  m <- ncol(Y)  #taille de Y (multivarié)
+  k <- length(piInit)  #nombre de composantes dans le mélange
+  .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+    X, Y, eps, phi = double(p * m * k), rho = double(m * m * k), pi = double(k), 
+    LLF = double(maxi), S = double(p * m * k), affec = integer(n), n, p, m, k, 
+    PACKAGE = "valse")
+}
+
+# R version - slow but easy to read
+.EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+  X, Y, eps)
+{
+  # Matrix dimensions
+  n <- nrow(X)
+  p <- ncol(X)
+  m <- ncol(Y)
+  k <- length(piInit)
+
+  # Adjustments required when p==1 or m==1 (var.sel. or output dim 1)
+  if (p==1 || m==1)
+    phiInit <- array(phiInit, dim=c(p,m,k))
+  if (m==1)
+    rhoInit <- array(rhoInit, dim=c(m,m,k))
+
+  # Outputs
+  phi <- phiInit
+  rho <- rhoInit
+  pi <- piInit
+  llh <- -Inf
+  S <- array(0, dim = c(p, m, k))
+
+  # Algorithm variables
+  gam <- gamInit
+  Gram2 <- array(0, dim = c(p, p, k))
+  ps2 <- array(0, dim = c(p, m, k))
+  X2 <- array(0, dim = c(n, p, k))
+  Y2 <- array(0, dim = c(n, m, k))
+  EPS <- 1e-15
+
+  for (ite in 1:maxi)
+  {
+    # Remember last pi,rho,phi values for exit condition in the end of loop
+    Phi <- phi
+    Rho <- rho
+    Pi <- pi
+
+    # Computations associated to X and Y
+    for (r in 1:k)
+    {
+      for (mm in 1:m)
+        Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm]
+      for (i in 1:n)
+        X2[i, , r] <- sqrt(gam[i, r]) * X[i, ]
+      for (mm in 1:m)
+        ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r])
+      for (j in 1:p)
+      {
+        for (s in 1:p)
+          Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r])
+      }
+    }
+
+    ## M step
+
+    # For pi
+    b <- sapply(1:k, function(r) sum(abs(phi[, , r])))
+    gam2 <- colSums(gam)
+    a <- sum(gam %*% log(pi))
+
+    # While the proportions are nonpositive
+    kk <- 0
+    pi2AllPositive <- FALSE
+    while (!pi2AllPositive)
+    {
+      pi2 <- pi + 0.1^kk * ((1/n) * gam2 - pi)
+      pi2AllPositive <- all(pi2 >= 0)
+      kk <- kk + 1
+    }
+
+    # t(m) is the largest value in the grid O.1^k such that it is nonincreasing
+    while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) <
+      # na.rm=TRUE to handle 0*log(0)
+      -sum(gam2 * log(pi2), na.rm=TRUE)/n + lambda * sum(pi2^gamma * b))
+    {
+      pi2 <- pi + 0.1^kk * (1/n * gam2 - pi)
+      kk <- kk + 1
+    }
+    t <- 0.1^kk
+    pi <- (pi + t * (pi2 - pi))/sum(pi + t * (pi2 - pi))
+
+    # For phi and rho
+    for (r in 1:k)
+    {
+      for (mm in 1:m)
+      {
+        ps <- 0
+        for (i in 1:n)
+          ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, r])
+        nY2 <- sum(Y2[, mm, r]^2)
+        rho[mm, mm, r] <- (ps + sqrt(ps^2 + 4 * nY2 * gam2[r]))/(2 * nY2)
+      }
+    }
+
+    for (r in 1:k)
+    {
+      for (j in 1:p)
+      {
+        for (mm in 1:m)
+        {
+          S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r] +
+            sum(phi[-j, mm, r] * Gram2[j, -j, r])
+          if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) {
+            phi[j, mm, r] <- 0
+          } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) {
+            phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, j, r]
+          } else {
+            phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, j, r]
+          }
+        }
+      }
+    }
+
+    ## E step
+
+    # Precompute det(rho[,,r]) for r in 1...k
+    detRho <- sapply(1:k, function(r) gdet(rho[, , r]))
+    sumLogLLH <- 0
+    for (i in 1:n)
+    {
+      # Update gam[,]; use log to avoid numerical problems
+      logGam <- sapply(1:k, function(r) {
+        log(pi[r]) + log(detRho[r]) - 0.5 *
+          sum((Y[i, ] %*% rho[, , r] - X[i, ] %*% phi[, , r])^2)
+      })
+
+      logGam <- logGam - max(logGam) #adjust without changing proportions
+      gam[i, ] <- exp(logGam)
+      norm_fact <- sum(gam[i, ])
+      gam[i, ] <- gam[i, ] / norm_fact
+      sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2))
+    }
+
+    sumPen <- sum(pi^gamma * b)
+    last_llh <- llh
+    llh <- -sumLogLLH/n #+ lambda * sumPen
+    dist <- ifelse(ite == 1, llh, (llh - last_llh)/(1 + abs(llh)))
+    Dist1 <- max((abs(phi - Phi))/(1 + abs(phi)))
+    Dist2 <- max((abs(rho - Rho))/(1 + abs(rho)))
+    Dist3 <- max((abs(pi - Pi))/(1 + abs(Pi)))
+    dist2 <- max(Dist1, Dist2, Dist3)
+
+    if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps)))
+      break
+  }
+
+  list(phi = phi, rho = rho, pi = pi, llh = llh, S = S)
+}
diff --git a/pkg/R/EMGrank.R b/pkg/R/EMGrank.R
new file mode 100644
index 0000000..b85a0fa
--- /dev/null
+++ b/pkg/R/EMGrank.R
@@ -0,0 +1,120 @@
+#' EMGrank
+#'
+#' Description de EMGrank
+#'
+#' @param Pi Parametre de proportion
+#' @param Rho Parametre initial de variance renormalisé
+#' @param mini Nombre minimal d'itérations dans l'algorithme EM
+#' @param maxi Nombre maximal d'itérations dans l'algorithme EM
+#' @param X Régresseurs
+#' @param Y Réponse
+#' @param tau Seuil pour accepter la convergence
+#' @param rank Vecteur des rangs possibles
+#'
+#' @return A list ...
+#'   phi : parametre de moyenne renormalisé, calculé par l'EM
+#'   LLF : log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres
+#'
+#' @export
+EMGrank <- function(Pi, Rho, mini, maxi, X, Y, tau, rank, fast = TRUE)
+{
+  if (!fast)
+  {
+    # Function in R
+    return(.EMGrank_R(Pi, Rho, mini, maxi, X, Y, tau, rank))
+  }
+
+  # Function in C
+  n <- nrow(X)  #nombre d'echantillons
+  p <- ncol(X)  #nombre de covariables
+  m <- ncol(Y)  #taille de Y (multivarié)
+  k <- length(Pi)  #nombre de composantes dans le mélange
+  .Call("EMGrank", Pi, Rho, mini, maxi, X, Y, tau, rank, phi = double(p * m * k), 
+    LLF = double(1), n, p, m, k, PACKAGE = "valse")
+}
+
+# helper to always have matrices as arg (TODO: put this elsewhere? improve?)  -->
+# Yes, we should use by-columns storage everywhere... [later!]
+matricize <- function(X)
+{
+  if (!is.matrix(X)) 
+    return(t(as.matrix(X)))
+  return(X)
+}
+
+# R version - slow but easy to read
+.EMGrank_R <- function(Pi, Rho, mini, maxi, X, Y, tau, rank)
+{
+  # matrix dimensions
+  n <- nrow(X)
+  p <- ncol(X)
+  m <- ncol(Y)
+  k <- length(Pi)
+
+  # init outputs
+  phi <- array(0, dim = c(p, m, k))
+  Z <- rep(1, n)
+  LLF <- 0
+
+  # local variables
+  Phi <- array(0, dim = c(p, m, k))
+  deltaPhi <- c()
+  sumDeltaPhi <- 0
+  deltaPhiBufferSize <- 20
+  
+  # main loop
+  ite <- 1
+  while (ite <= mini || (ite <= maxi && sumDeltaPhi > tau))
+  {
+    # M step: update for Beta ( and then phi)
+    for (r in 1:k)
+    {
+      Z_indice <- seq_len(n)[Z == r] #indices where Z == r
+      if (length(Z_indice) == 0) 
+        next
+      # U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr
+      s <- svd(MASS::ginv(crossprod(matricize(X[Z_indice, ]))) %*% 
+                 crossprod(matricize(X[Z_indice, ]), matricize(Y[Z_indice, ])))
+      S <- s$d
+      # Set m-rank(r) singular values to zero, and recompose best rank(r) approximation
+      # of the initial product
+      if (rank[r] < length(S)) 
+        S[(rank[r] + 1):length(S)] <- 0
+      phi[, , r] <- s$u %*% diag(S) %*% t(s$v) %*% Rho[, , r]
+    }
+
+    # Step E and computation of the loglikelihood
+    sumLogLLF2 <- 0
+    for (i in seq_len(n))
+    {
+      sumLLF1 <- 0
+      maxLogGamIR <- -Inf
+      for (r in seq_len(k))
+      {
+        dotProduct <- tcrossprod(Y[i, ] %*% Rho[, , r] - X[i, ] %*% phi[, , r])
+        logGamIR <- log(Pi[r]) + log(gdet(Rho[, , r])) - 0.5 * dotProduct
+        # Z[i] = index of max (gam[i,])
+        if (logGamIR > maxLogGamIR)
+        {
+          Z[i] <- r
+          maxLogGamIR <- logGamIR
+        }
+        sumLLF1 <- sumLLF1 + exp(logGamIR)/(2 * pi)^(m/2)
+      }
+      sumLogLLF2 <- sumLogLLF2 + log(sumLLF1)
+    }
+
+    LLF <- -1/n * sumLogLLF2
+
+    # update distance parameter to check algorithm convergence (delta(phi, Phi))
+    deltaPhi <- c(deltaPhi, max((abs(phi - Phi))/(1 + abs(phi)))) #TODO: explain?
+    if (length(deltaPhi) > deltaPhiBufferSize) 
+      deltaPhi <- deltaPhi[2:length(deltaPhi)]
+    sumDeltaPhi <- sum(abs(deltaPhi))
+
+    # update other local variables
+    Phi <- phi
+    ite <- ite + 1
+  }
+  return(list(phi = phi, LLF = LLF))
+}
diff --git a/pkg/R/computeGridLambda.R b/pkg/R/computeGridLambda.R
new file mode 100644
index 0000000..8449d10
--- /dev/null
+++ b/pkg/R/computeGridLambda.R
@@ -0,0 +1,36 @@
+#' computeGridLambda 
+#'
+#' Construct the data-driven grid for the regularization parameters used for the Lasso estimator
+#'
+#' @param phiInit value for phi
+#' @param rhoInit  for rho
+#' @param piInit  for pi
+#' @param gamInit value for gamma
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param gamma power of weights in the penalty
+#' @param mini minimum number of iterations in EM algorithm
+#' @param maxi maximum number of iterations in EM algorithm
+#' @param tau threshold to stop EM algorithm
+#'
+#' @return the grid of regularization parameters
+#'
+#' @export
+computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, 
+  maxi, tau, fast)
+{
+  n <- nrow(X)
+  p <- ncol(X)
+  m <- ncol(Y)
+  k <- length(piInit)
+
+  list_EMG <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda = 0, 
+    X, Y, tau, fast)
+  grid <- array(0, dim = c(p, m, k))
+  for (j in 1:p)
+  {
+    for (mm in 1:m)
+      grid[j, mm, ] <- abs(list_EMG$S[j, mm, ])/(n * list_EMG$pi^gamma)
+  }
+  sort(unique(grid))
+}
diff --git a/pkg/R/constructionModelesLassoMLE.R b/pkg/R/constructionModelesLassoMLE.R
new file mode 100644
index 0000000..9743f0c
--- /dev/null
+++ b/pkg/R/constructionModelesLassoMLE.R
@@ -0,0 +1,111 @@
+#' constructionModelesLassoMLE 
+#'
+#' Construct a collection of models with the Lasso-MLE procedure.
+#' 
+#' @param phiInit an initialization for phi, get by initSmallEM.R
+#' @param rhoInit an initialization for rho, get by initSmallEM.R
+#' @param piInit an initialization for pi, get by initSmallEM.R
+#' @param gamInit an initialization for gam, get by initSmallEM.R
+#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
+#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
+#' @param gamma integer for the power in the penaly, by default = 1
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
+#' @param S output of selectVariables.R
+#' @param ncores Number of cores, by default = 3
+#' @param fast TRUE to use compiled C code, FALSE for R code only
+#' @param verbose TRUE to show some execution traces
+#' 
+#' @return a list with several models, defined by phi, rho, pi, llh
+#'
+#' @export
+constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini, 
+  maxi, gamma, X, Y, eps, S, ncores = 3, fast, verbose)
+{
+  if (ncores > 1)
+  {
+    cl <- parallel::makeCluster(ncores, outfile = "")
+    parallel::clusterExport(cl, envir = environment(), varlist = c("phiInit", 
+      "rhoInit", "gamInit", "mini", "maxi", "gamma", "X", "Y", "eps", "S", 
+      "ncores", "fast", "verbose"))
+  }
+
+  # Individual model computation
+  computeAtLambda <- function(lambda)
+  {
+    if (ncores > 1) 
+      require("valse")  #nodes start with an empty environment
+
+    if (verbose) 
+      print(paste("Computations for lambda=", lambda))
+
+    n <- dim(X)[1]
+    p <- dim(phiInit)[1]
+    m <- dim(phiInit)[2]
+    k <- dim(phiInit)[3]
+    sel.lambda <- S[[lambda]]$selected
+    # col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix
+    col.sel <- which(sapply(sel.lambda, length) > 0)  #if list of selected vars
+    if (length(col.sel) == 0) 
+      return(NULL)
+
+    # lambda == 0 because we compute the EMV: no penalization here
+    res <- EMGLLF(array(phiInit[col.sel, , ],dim=c(length(col.sel),m,k)), rhoInit,
+      piInit, gamInit, mini, maxi, gamma, 0, as.matrix(X[, col.sel]), Y, eps, fast)
+
+    # Eval dimension from the result + selected
+    phiLambda2 <- res$phi
+    rhoLambda <- res$rho
+    piLambda <- res$pi
+    phiLambda <- array(0, dim = c(p, m, k))
+    for (j in seq_along(col.sel))
+      phiLambda[col.sel[j], sel.lambda[[j]], ] <- phiLambda2[j, sel.lambda[[j]], ]
+    dimension <- length(unlist(sel.lambda))
+
+    ## Computation of the loglikelihood
+    # Precompute det(rhoLambda[,,r]) for r in 1...k
+    detRho <- sapply(1:k, function(r) det(rhoLambda[, , r]))
+    sumLogLLH <- 0
+    for (i in 1:n)
+    {
+      # Update gam[,]; use log to avoid numerical problems
+      logGam <- sapply(1:k, function(r) {
+        log(piLambda[r]) + log(detRho[r]) - 0.5 *
+          sum((Y[i, ] %*% rhoLambda[, , r] - X[i, ] %*% phiLambda[, , r])^2)
+      })
+      
+      logGam <- logGam - max(logGam) #adjust without changing proportions
+      gam <- exp(logGam)
+      print(gam)
+      norm_fact <- sum(gam)
+      sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2))
+    }
+    llhLambda <- c(sumLogLLH/n, (dimension + m + 1) * k - 1)
+    # densite <- vector("double", n)
+    # for (r in 1:k)
+    # {
+    #   if (length(col.sel) == 1)
+    #   {
+    #     delta <- (Y %*% rhoLambda[, , r] - (X[, col.sel] %*% t(phiLambda[col.sel, , r])))
+    #   } else delta <- (Y %*% rhoLambda[, , r] - (X[, col.sel] %*% phiLambda[col.sel, , r]))
+    #   densite <- densite + piLambda[r] * det(rhoLambda[, , r])/(sqrt(2 * base::pi))^m * 
+    #     exp(-rowSums(delta^2)/2)
+    # }
+    # llhLambda <- c(mean(log(densite)), (dimension + m + 1) * k - 1)
+    list(phi = phiLambda, rho = rhoLambda, pi = piLambda, llh = llhLambda)
+  }
+
+  # For each lambda, computation of the parameters
+  out <-
+    if (ncores > 1) {
+      parLapply(cl, 1:length(S), computeAtLambda)
+    } else {
+      lapply(1:length(S), computeAtLambda)
+    }
+
+  if (ncores > 1) 
+    parallel::stopCluster(cl)
+
+  out
+}
diff --git a/pkg/R/constructionModelesLassoRank.R b/pkg/R/constructionModelesLassoRank.R
new file mode 100644
index 0000000..dc88f67
--- /dev/null
+++ b/pkg/R/constructionModelesLassoRank.R
@@ -0,0 +1,95 @@
+#' constructionModelesLassoRank
+#'
+#' Construct a collection of models with the Lasso-Rank procedure.
+#'
+#' @param S output of selectVariables.R
+#' @param k number of components
+#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
+#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
+#' @param rank.min integer, minimum rank in the low rank procedure, by default = 1
+#' @param rank.max integer, maximum rank in the low rank procedure, by default = 5
+#' @param ncores Number of cores, by default = 3
+#' @param fast TRUE to use compiled C code, FALSE for R code only
+#' @param verbose TRUE to show some execution traces
+#'
+#' @return a list with several models, defined by phi, rho, pi, llh
+#'
+#' @export
+constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min, rank.max, 
+  ncores, fast, verbose)
+{
+  n <- nrow(X)
+  p <- ncol(X)
+  m <- ncol(Y)
+  L <- length(S)
+
+  # Possible interesting ranks
+  deltaRank <- rank.max - rank.min + 1
+  Size <- deltaRank^k
+  RankLambda <- matrix(0, nrow = Size * L, ncol = k + 1)
+  for (r in 1:k)
+  {
+    # On veut le tableau de toutes les combinaisons de rangs possibles, et des
+    # lambdas Dans la première colonne : on répète (rank.max-rank.min)^(k-1) chaque
+    # chiffre : ça remplit la colonne Dans la deuxieme : on répète
+    # (rank.max-rank.min)^(k-2) chaque chiffre, et on fait ça (rank.max-rank.min)^2
+    # fois ...  Dans la dernière, on répète chaque chiffre une fois, et on fait ça
+    # (rank.min-rank.max)^(k-1) fois.
+    RankLambda[, r] <- rep(rank.min + rep(0:(deltaRank - 1), deltaRank^(r - 1), 
+      each = deltaRank^(k - r)), each = L)
+  }
+  RankLambda[, k + 1] <- rep(1:L, times = Size)
+
+  if (ncores > 1)
+  {
+    cl <- parallel::makeCluster(ncores, outfile = "")
+    parallel::clusterExport(cl, envir = environment(), varlist = c("A1", "Size", 
+      "Pi", "Rho", "mini", "maxi", "X", "Y", "eps", "Rank", "m", "phi", "ncores", 
+      "verbose"))
+  }
+
+  computeAtLambda <- function(index)
+  {
+    lambdaIndex <- RankLambda[index, k + 1]
+    rankIndex <- RankLambda[index, 1:k]
+    if (ncores > 1) 
+      require("valse")  #workers start with an empty environment
+
+    # 'relevant' will be the set of relevant columns
+    selected <- S[[lambdaIndex]]$selected
+    relevant <- c()
+    for (j in 1:p)
+    {
+      if (length(selected[[j]]) > 0)
+        relevant <- c(relevant, j)
+    }
+    if (max(rankIndex) < length(relevant))
+    {
+      phi <- array(0, dim = c(p, m, k))
+      if (length(relevant) > 0)
+      {
+        res <- EMGrank(S[[lambdaIndex]]$Pi, S[[lambdaIndex]]$Rho, mini, maxi, 
+          X[, relevant], Y, eps, rankIndex, fast)
+        llh <- c(res$LLF, sum(rankIndex * (length(relevant) - rankIndex + m)))
+        phi[relevant, , ] <- res$phi
+      }
+      list(llh = llh, phi = phi, pi = S[[lambdaIndex]]$Pi, rho = S[[lambdaIndex]]$Rho)
+    }
+  }
+
+  # For each lambda in the grid we compute the estimators
+  out <-
+    if (ncores > 1) {
+      parLapply(cl, seq_len(length(S) * Size), computeAtLambda)
+    } else {
+      lapply(seq_len(length(S) * Size), computeAtLambda)
+    }
+
+  if (ncores > 1) 
+    parallel::stopCluster(cl)
+
+  out
+}
diff --git a/pkg/R/generateXY.R b/pkg/R/generateXY.R
new file mode 100644
index 0000000..064b54b
--- /dev/null
+++ b/pkg/R/generateXY.R
@@ -0,0 +1,39 @@
+#' generateXY 
+#'
+#' Generate a sample of (X,Y) of size n
+#'
+#' @param n sample size
+#' @param π proportion for each cluster
+#' @param meanX matrix of group means for covariates (of size p)
+#' @param covX covariance for covariates (of size p*p)
+#' @param β regression matrix, of size p*m*k
+#' @param covY covariance for the response vector (of size m*m*K)
+#'
+#' @return list with X and Y
+#'
+#' @export
+generateXY <- function(n, π, meanX, β, covX, covY)
+{
+  p <- dim(covX)[1]
+  m <- dim(covY)[1]
+  k <- dim(covY)[3]
+
+  X <- matrix(nrow = 0, ncol = p)
+  Y <- matrix(nrow = 0, ncol = m)
+
+  # random generation of the size of each population in X~Y (unordered)
+  sizePop <- rmultinom(1, n, π)
+  class <- c() #map i in 1:n --> index of class in 1:k
+
+  for (i in 1:k)
+  {
+    class <- c(class, rep(i, sizePop[i]))
+    newBlockX <- MASS::mvrnorm(sizePop[i], meanX, covX)
+    X <- rbind(X, newBlockX)
+    Y <- rbind(Y, t(apply(newBlockX, 1, function(row) MASS::mvrnorm(1, row %*% 
+      β[, , i], covY[, , i]))))
+  }
+
+  shuffle <- sample(n)
+  list(X = X[shuffle, ], Y = Y[shuffle, ], class = class[shuffle])
+}
diff --git a/pkg/R/initSmallEM.R b/pkg/R/initSmallEM.R
new file mode 100644
index 0000000..44b4b06
--- /dev/null
+++ b/pkg/R/initSmallEM.R
@@ -0,0 +1,79 @@
+#' initialization of the EM algorithm 
+#'
+#' @param k number of components
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#'
+#' @return a list with phiInit, rhoInit, piInit, gamInit
+#' @export
+#' @importFrom methods new
+#' @importFrom stats cutree dist hclust runif
+initSmallEM <- function(k, X, Y, fast)
+{
+  n <- nrow(X)
+  p <- ncol(X)
+  m <- ncol(Y)
+  nIte <- 20
+  Zinit1 <- array(0, dim = c(n, nIte))
+  betaInit1 <- array(0, dim = c(p, m, k, nIte))
+  sigmaInit1 <- array(0, dim = c(m, m, k, nIte))
+  phiInit1 <- array(0, dim = c(p, m, k, nIte))
+  rhoInit1 <- array(0, dim = c(m, m, k, nIte))
+  Gam <- matrix(0, n, k)
+  piInit1 <- matrix(0, nIte, k)
+  gamInit1 <- array(0, dim = c(n, k, nIte))
+  LLFinit1 <- list()
+
+  # require(MASS) #Moore-Penrose generalized inverse of matrix
+  for (repet in 1:nIte)
+  {
+    distance_clus <- dist(cbind(X, Y))
+    tree_hier <- hclust(distance_clus)
+    Zinit1[, repet] <- cutree(tree_hier, k)
+
+    for (r in 1:k)
+    {
+      Z <- Zinit1[, repet]
+      Z_indice <- seq_len(n)[Z == r]  #renvoit les indices où Z==r
+      if (length(Z_indice) == 1) {
+        betaInit1[, , r, repet] <- MASS::ginv(crossprod(t(X[Z_indice, ]))) %*% 
+          crossprod(t(X[Z_indice, ]), Y[Z_indice, ])
+      } else {
+        betaInit1[, , r, repet] <- MASS::ginv(crossprod(X[Z_indice, ])) %*% 
+          crossprod(X[Z_indice, ], Y[Z_indice, ])
+      }
+      sigmaInit1[, , r, repet] <- diag(m)
+      phiInit1[, , r, repet] <- betaInit1[, , r, repet]  #/ sigmaInit1[,,r,repet]
+      rhoInit1[, , r, repet] <- solve(sigmaInit1[, , r, repet])
+      piInit1[repet, r] <- mean(Z == r)
+    }
+
+    for (i in 1:n)
+    {
+      for (r in 1:k)
+      {
+        dotProduct <- tcrossprod(Y[i, ] %*% rhoInit1[, , r, repet]
+          - X[i, ] %*% phiInit1[, , r, repet])
+        Gam[i, r] <- piInit1[repet, r] * 
+          gdet(rhoInit1[, , r, repet]) * exp(-0.5 * dotProduct)
+      }
+      sumGamI <- sum(Gam[i, ])
+      gamInit1[i, , repet] <- Gam[i, ]/sumGamI
+    }
+
+    miniInit <- 10
+    maxiInit <- 11
+
+    init_EMG <- EMGLLF(phiInit1[, , , repet], rhoInit1[, , , repet], piInit1[repet, ],
+      gamInit1[, , repet], miniInit, maxiInit, gamma = 1, lambda = 0, X, Y,
+      eps = 1e-04, fast)
+    LLFinit1[[repet]] <- init_EMG$llh
+  }
+  b <- which.min(LLFinit1)
+  phiInit <- phiInit1[, , , b]
+  rhoInit <- rhoInit1[, , , b]
+  piInit <- piInit1[b, ]
+  gamInit <- gamInit1[, , b]
+
+  return(list(phiInit = phiInit, rhoInit = rhoInit, piInit = piInit, gamInit = gamInit))
+}
diff --git a/pkg/R/main.R b/pkg/R/main.R
new file mode 100644
index 0000000..d710b7e
--- /dev/null
+++ b/pkg/R/main.R
@@ -0,0 +1,161 @@
+#' valse 
+#'
+#' Main function
+#'
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param procedure among 'LassoMLE' or 'LassoRank'
+#' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC'
+#' @param gamma integer for the power in the penaly, by default = 1
+#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
+#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
+#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
+#' @param kmin integer, minimum number of clusters, by default = 2
+#' @param kmax integer, maximum number of clusters, by default = 10
+#' @param rank.min integer, minimum rank in the low rank procedure, by default = 1
+#' @param rank.max integer, maximum rank in the low rank procedure, by default = 5
+#' @param ncores_outer Number of cores for the outer loop on k
+#' @param ncores_inner Number of cores for the inner loop on lambda
+#' @param thresh real, threshold to say a variable is relevant, by default = 1e-8
+#' @param compute_grid_lambda, TRUE to compute the grid, FALSE if known (in arguments)
+#' @param grid_lambda, a vector with regularization parameters if known, by default 0
+#' @param size_coll_mod (Maximum) size of a collection of models
+#' @param fast TRUE to use compiled C code, FALSE for R code only
+#' @param verbose TRUE to show some execution traces
+#'
+#' @return a list with estimators of parameters
+#'
+#' @examples
+#' #TODO: a few examples
+#' @export
+valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mini = 10, 
+  maxi = 50, eps = 1e-04, kmin = 2, kmax = 3, rank.min = 1, rank.max = 5, ncores_outer = 1, 
+  ncores_inner = 1, thresh = 1e-08, compute_grid_lambda = TRUE, grid_lambda = 0, size_coll_mod = 10, fast = TRUE, verbose = FALSE, 
+  plot = TRUE)
+{
+  n <- nrow(X)
+  p <- ncol(X)
+  m <- ncol(Y)
+
+  if (verbose) 
+    print("main loop: over all k and all lambda")
+
+  if (ncores_outer > 1) {
+    cl <- parallel::makeCluster(ncores_outer, outfile = "")
+    parallel::clusterExport(cl = cl, envir = environment(), varlist = c("X", 
+      "Y", "procedure", "selecMod", "gamma", "mini", "maxi", "eps", "kmin", 
+      "kmax", "rank.min", "rank.max", "ncores_outer", "ncores_inner", "thresh", 
+      "size_coll_mod", "verbose", "p", "m"))
+  }
+
+  # Compute models with k components
+  computeModels <- function(k)
+  {
+    if (ncores_outer > 1) 
+      require("valse")  #nodes start with an empty environment
+
+    if (verbose) 
+      print(paste("Parameters initialization for k =", k))
+    # smallEM initializes parameters by k-means and regression model in each
+    # component, doing this 20 times, and keeping the values maximizing the
+    # likelihood after 10 iterations of the EM algorithm.
+    P <- initSmallEM(k, X, Y, fast)
+    if (compute_grid_lambda == TRUE)
+    {
+      grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, 
+                                       X, Y, gamma, mini, maxi, eps, fast)
+    }
+    if (length(grid_lambda) > size_coll_mod) 
+      grid_lambda <- grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)]
+
+    if (verbose) 
+      print("Compute relevant parameters")
+    # select variables according to each regularization parameter from the grid:
+    # S$selected corresponding to selected variables
+    S <- selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, 
+      gamma, grid_lambda, X, Y, thresh, eps, ncores_inner, fast)
+
+    if (procedure == "LassoMLE") {
+      if (verbose) 
+        print("run the procedure Lasso-MLE")
+      # compute parameter estimations, with the Maximum Likelihood Estimator,
+      # restricted on selected variables.
+      models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit, 
+        P$gamInit, mini, maxi, gamma, X, Y, eps, S, ncores_inner, fast, verbose)
+    } else {
+      if (verbose) 
+        print("run the procedure Lasso-Rank")
+      # compute parameter estimations, with the Low Rank Estimator, restricted on
+      # selected variables.
+      models <- constructionModelesLassoRank(S, k, mini, maxi, X, Y, eps, rank.min, 
+        rank.max, ncores_inner, fast, verbose)
+    }
+    # warning! Some models are NULL after running selectVariables
+    models <- models[sapply(models, function(cell) !is.null(cell))]
+    models
+  }
+
+  # List (index k) of lists (index lambda) of models
+  models_list <-
+    if (ncores_outer > 1) {
+      parLapply(cl, kmin:kmax, computeModels)
+    } else {
+      lapply(kmin:kmax, computeModels)
+    }
+  if (ncores_outer > 1) 
+    parallel::stopCluster(cl)
+
+  if (!requireNamespace("capushe", quietly = TRUE))
+  {
+    warning("'capushe' not available: returning all models")
+    return(models_list)
+  }
+
+  # Get summary 'tableauRecap' from models
+  tableauRecap <- do.call(rbind, lapply(seq_along(models_list), function(i)
+  {
+    models <- models_list[[i]]
+    # For a collection of models (same k, several lambda):
+    LLH <- sapply(models, function(model) model$llh[1])
+    k <- length(models[[1]]$pi)
+    sumPen <- sapply(models, function(model) k * (dim(model$rho)[1] + sum(model$phi[, 
+      , 1] != 0) + 1) - 1)
+    data.frame(model = paste(i, ".", seq_along(models), sep = ""), pen = sumPen/n, 
+      complexity = sumPen, contrast = -LLH)
+  }))
+  tableauRecap <- tableauRecap[which(tableauRecap[, 4] != Inf), ]
+  if (verbose == TRUE)
+  {
+    print(tableauRecap)
+  }
+  modSel <- capushe::capushe(tableauRecap, n)
+  indModSel <- if (selecMod == "DDSE") 
+    as.numeric(modSel@DDSE@model) else if (selecMod == "Djump") 
+    as.numeric(modSel@Djump@model) else if (selecMod == "BIC") 
+    modSel@BIC_capushe$model else if (selecMod == "AIC") 
+    modSel@AIC_capushe$model
+
+  mod <- as.character(tableauRecap[indModSel, 1])
+  listMod <- as.integer(unlist(strsplit(mod, "[.]")))
+  modelSel <- models_list[[listMod[1]]][[listMod[2]]]
+
+  ## Affectations
+  Gam <- matrix(0, ncol = length(modelSel$pi), nrow = n)
+  for (i in 1:n)
+  {
+    for (r in 1:length(modelSel$pi))
+    {
+      sqNorm2 <- sum((Y[i, ] %*% modelSel$rho[, , r] - X[i, ] %*% modelSel$phi[, , r])^2)
+      Gam[i, r] <- modelSel$pi[r] * exp(-0.5 * sqNorm2) * gdet(modelSel$rho[, , r])
+    }
+  }
+  Gam <- Gam/rowSums(Gam)
+  modelSel$affec <- apply(Gam, 1, which.max)
+  modelSel$proba <- Gam
+  modelSel$tableau <- tableauRecap
+
+  if (plot)
+    print(plot_valse(X, Y, modelSel, n))
+
+  return(modelSel)
+}
diff --git a/pkg/R/plot_valse.R b/pkg/R/plot_valse.R
new file mode 100644
index 0000000..ec2302d
--- /dev/null
+++ b/pkg/R/plot_valse.R
@@ -0,0 +1,89 @@
+#' Plot 
+#'
+#' It is a function which plots relevant parameters
+#'
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param model the model constructed by valse procedure
+#' @param n sample size
+#' @return several plots
+#'
+#' @examples TODO
+#'
+#' @export
+#'
+plot_valse <- function(X, Y, model, n, comp = FALSE, k1 = NA, k2 = NA)
+{
+  require("gridExtra")
+  require("ggplot2")
+  require("reshape2")
+  require("cowplot")
+
+  K <- length(model$pi)
+  ## regression matrices
+  gReg <- list()
+  for (r in 1:K)
+  {
+    Melt <- melt(t((model$phi[, , r])))
+    gReg[[r]] <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + 
+      geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", 
+      midpoint = 0, space = "Lab") + ggtitle(paste("Regression matrices in cluster", r))
+  }
+  print(gReg)
+
+  ## Differences between two clusters
+  if (comp)
+  {
+    if (is.na(k1) || is.na(k))
+      print("k1 and k2 must be integers, representing the clusters you want to compare")
+    Melt <- melt(t(model$phi[, , k1] - model$phi[, , k2]))
+    gDiff <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value))
+      + geom_tile()
+      + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, 
+        space = "Lab")
+      + ggtitle(paste("Difference between regression matrices in cluster", 
+        k1, "and", k2))
+    print(gDiff)
+  }
+
+  ### Covariance matrices
+  matCov <- matrix(NA, nrow = dim(model$rho[, , 1])[1], ncol = K)
+  for (r in 1:K)
+    matCov[, r] <- diag(model$rho[, , r])
+  MeltCov <- melt(matCov)
+  gCov <- ggplot(data = MeltCov, aes(x = Var1, y = Var2, fill = value)) + geom_tile()
+    + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, 
+      space = "Lab")
+    + ggtitle("Covariance matrices")
+  print(gCov)
+
+  ### Proportions
+  gam2 <- matrix(NA, ncol = K, nrow = n)
+  for (i in 1:n)
+    gam2[i, ] <- c(model$proba[i, model$affec[i]], model$affec[i])
+
+  bp <- ggplot(data.frame(gam2), aes(x = X2, y = X1, color = X2, group = X2))
+    + geom_boxplot()
+    + theme(legend.position = "none")
+    + background_grid(major = "xy", minor = "none")
+  print(bp)
+
+  ### Mean in each cluster
+  XY <- cbind(X, Y)
+  XY_class <- list()
+  meanPerClass <- matrix(0, ncol = K, nrow = dim(XY)[2])
+  for (r in 1:K)
+  {
+    XY_class[[r]] <- XY[model$affec == r, ]
+    if (sum(model$affec == r) == 1) {
+      meanPerClass[, r] <- XY_class[[r]]
+    } else {
+      meanPerClass[, r] <- apply(XY_class[[r]], 2, mean)
+    }
+  }
+  data <- data.frame(mean = as.vector(meanPerClass),
+    cluster = as.character(rep(1:K, each = dim(XY)[2])), time = rep(1:dim(XY)[2], K))
+  g <- ggplot(data, aes(x = time, y = mean, group = cluster, color = cluster))
+  print(g + geom_line(aes(linetype = cluster, color = cluster))
+    + geom_point(aes(color = cluster)) + ggtitle("Mean per cluster"))
+}
diff --git a/pkg/R/selectVariables.R b/pkg/R/selectVariables.R
new file mode 100644
index 0000000..39e54d2
--- /dev/null
+++ b/pkg/R/selectVariables.R
@@ -0,0 +1,81 @@
+#' selectVariables 
+#'
+#' It is a function which construct, for a given lambda, the sets of relevant variables.
+#'
+#' @param phiInit an initial estimator for phi (size: p*m*k)
+#' @param rhoInit an initial estimator for rho (size: m*m*k)
+#' @param piInit an initial estimator for pi (size : k)
+#' @param gamInit an initial estimator for gamma
+#' @param mini  minimum number of iterations in EM algorithm
+#' @param maxi  maximum number of iterations in EM algorithm
+#' @param gamma  power in the penalty
+#' @param glambda grid of regularization parameters
+#' @param X    matrix of regressors
+#' @param Y    matrix of responses
+#' @param thresh real, threshold to say a variable is relevant, by default = 1e-8
+#' @param eps   threshold to say that EM algorithm has converged
+#' @param ncores Number or cores for parallel execution (1 to disable)
+#'
+#' @return a list of outputs, for each lambda in grid: selected,Rho,Pi
+#'
+#' @examples TODO
+#'
+#' @export
+#'
+selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, 
+  glambda, X, Y, thresh = 1e-08, eps, ncores = 3, fast)
+{
+  if (ncores > 1) {
+    cl <- parallel::makeCluster(ncores, outfile = "")
+    parallel::clusterExport(cl = cl, varlist = c("phiInit", "rhoInit", "gamInit", 
+      "mini", "maxi", "glambda", "X", "Y", "thresh", "eps"), envir = environment())
+  }
+
+  # Computation for a fixed lambda
+  computeCoefs <- function(lambda)
+  {
+    params <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+      X, Y, eps, fast)
+
+    p <- ncol(X)
+    m <- ncol(Y)
+
+    # selectedVariables: list where element j contains vector of selected variables
+    # in [1,m]
+    selectedVariables <- lapply(1:p, function(j) {
+      # from boolean matrix mxk of selected variables obtain the corresponding boolean
+      # m-vector, and finally return the corresponding indices
+      if (m>1) {
+        seq_len(m)[apply(abs(params$phi[j, , ]) > thresh, 1, any)]
+      } else {
+        if (any(params$phi[j, , ] > thresh))
+          1
+        else
+          numeric(0)
+      }
+    })
+
+    list(selected = selectedVariables, Rho = params$rho, Pi = params$pi)
+  }
+
+  # For each lambda in the grid, we compute the coefficients
+  out <-
+    if (ncores > 1) {
+      parLapply(cl, glambda, computeCoefs)
+    } else {
+      lapply(glambda, computeCoefs)
+    }
+  if (ncores > 1) 
+    parallel::stopCluster(cl)
+  # Suppress models which are computed twice En fait, ca ca fait la comparaison de
+  # tous les parametres On veut juste supprimer ceux qui ont les memes variables
+  # sélectionnées
+  # sha1_array <- lapply(out, digest::sha1) out[ duplicated(sha1_array) ]
+  selec <- lapply(out, function(model) model$selected)
+  ind_dup <- duplicated(selec)
+  ind_uniq <- which(!ind_dup)
+  out2 <- list()
+  for (l in 1:length(ind_uniq))
+    out2[[l]] <- out[[ind_uniq[l]]]
+  out2
+}
diff --git a/pkg/R/util.R b/pkg/R/util.R
new file mode 100644
index 0000000..f8b01cc
--- /dev/null
+++ b/pkg/R/util.R
@@ -0,0 +1,7 @@
+# ...
+gdet <- function(M)
+{
+	if (is.matrix(M))
+		return (det(M))
+	return (M[1]) #numeric, double
+}
diff --git a/pkg/data/data.RData b/pkg/data/data.RData
new file mode 100644
index 0000000000000000000000000000000000000000..a9f09e143adfa04f595a40b993efa688ebd05a4b
GIT binary patch
literal 1010
zcmV<O0}cEiiwFP!0000016`77P}Bt&#{atu>p&WZl>sV;MkEktY=rRsmk}pa$Ymf|
zh%+!j5MfYaWQj0NjSw<W#7KlV8WM{`0pF!YkSkzVt}S3$Smbiq1BGQdTC-1lc;4rk
zc|Se#d%TYL+G_f05(GgdXf!H8rKzGCRdpzY8lmyheO15LRlyd-i{9N%Pn7s<BPHir
zem067C<~@1^<ag?u=m+|z$J>Z8tauaP}k|=7GfR?3xiC$wy8cy^2&Ku+%x#Sd9>t$
zLmDm^dp4WeYeFCEnoB`wICgw3@@~y4gPhV+@xcK*P%!AO`$5DRkTD)oXS7Ic^{*??
zW@d4z1<kq#IHzGbCRwVCN{8;*VXGFU9OwLO*iN3=Ft>MdXuj-ykhk3R&r1y<X;)(S
zSN+Se);sX?v^X)2eCzM?DE}Aa2O1Phg}q!#gS%{0ZbK6NQB5Kt8-%5Q2@<^9peO2!
zh6v+}IObGktlhW=$M^k_mdn$?nY!Z|J`#7FNFDD@Pp-u==N|UL4~6*8;e;ORI6aW;
zw~I^aECTsi!A(c|HB``J?r)^;hqdmqub6&q_~MQFjF3~R-i%A4wzus_y45W`UtudO
zd79nLuxNvtgNf`W?QvK+B6o{fKaPr&Z;lyfKgX5T56KgIf<O@Tyf0Xw11qsEvSerO
zHc+&%h-j7V`i~_+ykx4b(&l!a?EiTl#+HauVPU|>Frc`xn~9sSvAlM@y(*Vfi)3U6
z6_Z?=CI9l)hCa+Y{C)q>;4LnlH&A!>UOY(J`%@WB*Kw+7R_I|=538Xe^IaxaV6LQE
z${Gm5C2JFkVyl*<7&)30u6P0er*eaKb_bUdxM{YW--RQw)~7G!8eyO2PzAB0kEF)t
z?XHy_!ZphSLN<FAq&ssSewxlgv7s5$Cbb8KlAU<0{!~)UHaLjEv4o|7Xs0Hz7RqXl
z@g3~}r&+6t6xUi@zY%TWb?#kqSLQqFItEFotc*6R{4p8C#Wq6$Z+d`e5cXEN{)y7_
zTCR682T>wX1fD4Q6{c8^!k<;Mak*tgWMAQeqci5;=}*!@7W0`L#=>CsH@lls&U?r!
zc@iF6c@hNYlSY*_w~^;y75Te$4sIR|=P-7f!9+gWnOy2Zp&>Z7CWgV{3%AEc$_DH_
zI>bpVy9f&=2Rmjjlt7nvW^AOd048cSvZ`JygnrlCayPGi$Zr}>`8kaSB7KiJ-K~$X
zKP>8Li?SOh8ynTuGYsIVqt0dNolu+}p1ZeL@fJ*RK52ejSBxS*_1**vLzoeFJ*W;i
g2h$j?5gPyHEAZ5<ZKI&S8U?ZWFExW2g!}^l0QK<asQ>@~

literal 0
HcmV?d00001

diff --git a/pkg/data/data2.RData b/pkg/data/data2.RData
new file mode 100644
index 0000000000000000000000000000000000000000..80003e3c090402d85e308401bb23159ebe1d53ca
GIT binary patch
literal 18385
zcmV(vK<d9AiwFP!000001MR#AP*p**E=tZIAOfNYh$7j9hy;5B0xF6GML`T8ASy`|
zL=XfeDS{#(K}E?(Qb2+r^d{$=bIv(uc${<Yd3DcU_kXwEdv#ycyY+X~+S7aWnr~)S
zubJ*%y=pYi-8eyagN}rRgp7oooQ#Bwe21kV+xa0Sp&+6Cw?F6fpX%?3ckl2!LNcbE
zVg!oZ`d;fjG$D|>9w!<qlw$0@3dI*Pxj0JFy_n*D5BmA#6HaMP!EkCxMI{?O)`TP&
zPcwv|4YN=|hR11WsrLU&mhcKEd<6Wn1KvS@=%di;_XZFb*X<a6ivkKny;ncg`=iU)
z``e~J>7o5D=RJ-5M3~85y5TpT4>flw+^-(2AySBs3Udj4#=a}%qfT$rVfI8z-ra~%
zB1xchqLg+qfo#aw;oL|PtlrVP(vazZfxnE>z8k!Q1sa;lxS#eg*2mVMqI4QZjXz&$
z=U5<+SF6AIny?qAF1q<2=_SRMapSSLsP{Nd^Vu_(`zA~~Uv8{9l?Y3(FE5@^|A`~{
zL(C#dNjMO5<Z|hkheXPltxuXhS71(qw|0rk1Zz&FZJqsd5mJrQ5>t(z;!yk5<;1I0
zutCP|XY;iM#;nxnGzG@6+1fjqucrg1pE)!fN`JD`?%oNV%hWhG)M(%sVFdj=jqw9w
z!7ywawBTE2kALO!Xt#}pVa`?XTlryEEWcu=okqul?e3d{GULy1{9yZ@yciW|Y4vqa
zmKem*^iulLv)<UQo@0D_ARp#NXV+x){NV3zVJ6=r95A96-JC6^ip2)^jSd^g!7%Ua
zQk3)t^xgMRG!9sYS@$W&qKSB%ZS$&pb+--Xdm=SL8Q9?O;j~BbZ0<Oxe{T03_5uQl
z!|zum`oXv&k`iuuqZ|5pc~~t}t8wK{nE0j%4fMsonK>V^2m^v&+WQ)ka82~-)A`af
z(D?nb*GUz62xqo6C-*YM^j(F{Jyl)U+KaLd*X3ZVBQof(Jr|lK|LA1VC&6vai8fs|
zQtT6nW%E+!z_EY}F3wtZVC(yM@seFH^oyk&u=j1n>2bkJw!RWrC;US?EJYYLfAS6$
z*@Z!>$)Q_n3kEn}@g*R3ngW}&9A}`40*1m;64f=%!CW5yletb(Y_Q%M3DkRzjeEFH
zf2JD2!7JR~u6`DT7QPSe-&Q7ZrY}cxZTT)Vi(J-QKV5`#N^Cq$1ztoFyw_lw!GX4k
zKW-ZaghM{*_;b&`0%*<p70BAX7w1H}C<1i{V3c0}ZR%Gq?7!$H+ZPlH!y>NtW}D1m
zm0ersEqe<t&srxG+>6C^CgIOvRvNI;u3Jn>Y6nGq64c7Fe_>kH@A2NvT3n1J(Ykos
z3-H*Go5~y&wk%x+)`MqpINpL~m*YKHYdm6+?P!aG(=OxnSsFOUSoZZ#`XShOF#q}&
z-5F?lzCSy!<1O@4X>DAdUWe8WPhp*03LHDT_40gGDGW3kIlId}g}Jrm*HdP(P_rlF
z!F`+C*vGN?_V9;aSaFk{g>sh$Haxybmc(F-bJ6jF)zKoj_WZHHG(j7N&gxt4K23!^
z)*VEPgg_Yckf{1Y9Rf2ql=sO|X=24Bt%EVc64bHF=kecrid*t2Pt(Ki!`#tm;a0m{
z*prof=bXnkBB{f1+0$BHm@iLrj`CI;u4r5TD(g{zNwX7%Q1=D<!<ZB{;-6v9v%YwN
zOY7Kta{tQ2Rs-~%y|0{)9{4MOb?#yD6&Q;wDPHq`4y)lwc=<pM=Eq-Y+#HvNf+kf9
zY6(T?R@6PdsGp9@wr0`s8XVX`(#D&#o<SgCkb8MS?=JKd^c*3SFW{_T+^!9y6<jvB
zNdIO^2I?Eiz0O8D!yt~=hW;_YF}||vipLl5$F3RCpleTXfiKOFN%a%d4b~P8I@Lpv
zh~u61+%!n$JYL!%`yBiv=-azSMj`!4g~slAYMlT4EC6;TA~90<o=o;4wpOV|Er(vm
zxwK4K*;y}G(A=|lURx4J9lM3tCv~7^^>$1Eixgx#*#xN`XM{DKzLT;im!Vf~{Ro#@
z437LQ=2z0b0bR2BF$GEGIGJ!slYW&JN5omfnmuQsC8+bbQ_?Zqc;ULNKU4x8MA7v#
z-s(7S;2dMw+XaKPo*g##f523_!nOE2{y4BO_04rI3Tnyihc-T0Le||6-DeMU;Exra
z6I*){phd^;o);|x7H7z5^raR+bd2FXGtV!udWurS!g2{4Z)I`$7q~!{74d4Oof=NA
zFj~~wT4B4VyQJf<Dd<%@rC_H17~2SP>v6ko!Fu$Mf;v-fSc_*FeaawBBwg$!2<dQQ
zSA{}7EA4%#vZL~-REUS=uacjJl@G&A<mEHFr0?L2*}Gj~J{h=VTE>62rU^RSS5ChT
zb|sRZ5xC^e_ZgcmD}TPOk%nV~+_(0a?7<c<;~=ZNFW92w{QMB}Md-f4(iOBhgxz!*
za`Ms)Fd2Lyt(S8M7t-vM4;gO3HifOI{UKWLoLhLeT-pLtVaJacH6Dkx?NmdCxoylg
z3nVht9)baliFdwb`M4yR@J5OM4}p~Kp58@`WJq@NJYoO(1ddq0VBDXmg;5Dt@9X3U
zWB7j8W*W=01X5pP7sJV8*mU2c-^aWUGYnooo2_+%D)RV>=Qn$>hw^lJxONI)R<+4$
z+a>7iScuwi-s%55No7RN7PQ5R<k7fPV8w}z+}xEH_|+U;1d=PDI5F<*X7f1C{Cs}o
zSHd4$u+Mp4bu|=cC<E?)+ux6?L5`&jgKw}&W#Wad?Q2-Bjq!L{JO}CaWgjXu9B`3j
z=yCHU3M^`5J>Z{m0ctoK!#-=O!FWi(Oc{e5PG1kW%4%DN^Wg?UxfV${70~-fUG@je
z-@<!GM|hC<jHYFVd=h4_oha<w?F(UI#dQ^dx1nhM)1$iw8=yhub$rS808BZFOQq9k
z<Kn8J)t7@+Fe`V8<6y!?ocZOmORtLuacc9y8M1Q(l6ifZL7`k&c_5IKXVwf0@%`Mg
zAO;J)(k?{aZfF|Sqt>i{i^F~@&$5I?U|7K`g8nog4mNlFR3J0JMe&wHMVu$Fqctqp
z<%l<|UR=#OJspA*$33o7ktjpq!-EeE2E}pPSn0v75_T928n)FG*aLH)q>hOOtYItr
zu#&-YD$ch*j+Lg##MzF!JU+cXP#~@vV!cQQB~OIo6gXONPMRf$YK9sXZ%}KD1yw_O
zPIu5piX<GjTs*fdw~3SN^CRzvSFtdN?ZVO01Xx|J8$2D8iX*-y&rGOvaLYxZgE&ir
z!`43nuGcF;<7c5m+cv+jmDA!{%ljhi@ewVl6imQzb@IB8k2j#RwwAD2$&I-g3H!w}
z6L7F_UuPkO6OmG}x`=D<O^m0PJ!Cm+h4X#eF_y{X(4ofbhnjZq^N-=feKt1<B$2P?
z<ii*VBo|0#gBKrR=hR&8La7gAIi^uj7)Zg))e23X?;l{)`_|d_t<x~PJ|?7PM1~VH
zXI=(by@66C!{CF91K4|t{n68K5(uiTpLuax7pBT`nN3OzAwNM-%wp9I+gxd8>{Yfg
zb3{St)TJc&mMB8`MMVv4hR!idwz3jQQq-kQVi0GyFL#6)mEiajN?X^;EnFpC7ae5X
zfT`g#BX{P;p~3jqXw8-$F8r=nepfGvi#e(TIV7tDiU3mo!6scCHr_A9lqL@I*>zdF
zM*cuul=#*aZdPcCQE-qbz7E4`95?GZdazTn|BlZ#J4Qd+Jmy+y05%7-?f6;SaA|bc
zne6Y~FkI2znX6fVGc>>SJ>AaXNZf0SJZ4##J7YoQqge*x-L>2$pIn$fyTmR*@PeKj
z?#nW>uV918?qtP$6pkh8gfYBJf$8*oiO%*Om}5U`T5GM0MN|^Hsd+;%SWa#zLqd+-
z)1^oM@QPuZ@xU8xOI4U@`dTw_?IDg_(B@hU7J??BM~-PCAvjrM?CtzV3|8%&+MA~6
zq1Mrz>S&WV3}2VA{m{@&pzA(rWUg9+`6ZjA&U*0#GEbGygjZS6nz^Unq?sRjnce%6
z$#&u7ZL7NT?b$HE>=`y*-U{gj#5`&3PdKgDO)6+fg-s>RE9)zixV+DI;f1>-E-jvY
z!zU__4L)C`DBV9{ky=Olr1c1_z0JQo`s*n4$joW-O=QE*mx@|n9-bhQFh3)n|9Jvu
zk!fnwH3b@1@7!j|JdO)ri+y&HRl(wV|6c#PqcHQnE9F+YF6L6zOk24(!eFd#7RNRp
z3{%T#{W)|BMsz#kzE3_SP#F39+NOFyW#?ozOQ9;Ho`1pcLt6y?Ud*yOyzeWN%GmO<
zR#w3zv!i3M7!^#_{|KQupNJc+y`guX-iDC{KUN9_UKpkjV{eOn39CM&cQefFaqv}L
zjd!0i&LnG*YrVPzlNw_#=XG`w$i+-2o#;}DWI^OV1(^zAL8SA3|NVZ*eYP|-yLJd8
zE$o(3e}9Djrl(gQe6NMRJF8~b;(1_I%|GY&Yi$^aYH)g8QjSyf#cTJYcb<djTfw!-
zMfhanCsVD}7R>lk4hEly#ZQLBs+4YVoUD&H9&vx2K&g1?)3(?$L?4@27YaCpL#{Gy
zUdxxD>M+$vuEasCWLnX_oZ$w&`$J>+lxDFmLS*xX%OZ?P?qlC4p$dt^K0cp3F5^;Z
zR%V3kH(a9ZAg$I?0^;j#*Rhf|-01oArlR~ZWRUC~wih2G(y*&>*-+-;bj;ee)k!Cq
zprw*9s6GcvKaC$|?K=UbwY@|)b61=qEI*iHD}xbnz7lumAOh)4a>Ih`K$vLva#XdB
zfx!`T_c!jFFhPI$y3KQQ4E`izety#kW^DF9XS7nr*^vk0`v*i}@uB@ICL=3c+`jXn
z;l4GrRSpQ66$|4cQ{ATv4|n{46H6Qo{+95Elr#I%U?J4$gl}H3XCP3V@aQ%ELBL-p
z^YlVV#Gqk;`L3NKEmWZA&yVZRao~Pk=p8ph0_EEHNSkm64)AwRHeY)Ujg!9>KC-dH
zIJH8F_Tg_t%CCyoLY1{}BiJ-Q-|8~<A2c`_tI7)QwAc1d>Y8I#W3ny}bv&+cT58?7
zlminc?|(h+JBADNPPaDs?qkz{+-tLYj?k5D1-|hs&?*!gDAe^B`#et_VRUiBp55x{
zcKO#}CfwO_UrZ&Wlq<2nGbzCCqH~TOk!{dBPrm!FnLdmc$#I^~vx1oSGYxeoK42Q_
z(@*Sox?qHl!YEVuHl(z79Cx~+0X@z2y36;tfp~D2c;ihT*lH~%4?NWbU(}8<(ecYd
zd(X=gPmUGh=<9g3sK=(TC7{pv<k>3J7#K*5^*caM^^k(Z;fL6vU`<QI_zOBUxDQ8R
z1Fn#KY_I-m4E=?F6}Lm?p~i*o(2Fd2oY1taemE!qtp#i^i~FNt8h+hP`bdps9lN$D
z-sfUPNa=msNNOBudstX1GXyg}QD^!C-V;gJgv0iozl>}21;R8V?{TtFw~}$B8de`Y
zeD9)n3~Fi3wvQzmU{l$bR#8(kC|^!|PHa(y;=1oY_x6<GVqik&ZM+3N8NDwrcprty
zH`SUj(FbcaK~FM5MX_tG#p;lLAWZW74Zl`l1amxJ?qnKWgrer%EtE@z&?7hdy+&on
zzF()BoC|ypYYGELS~%iy^}&==pwSc#FFH7SDF)yKugdig`h{5e{cF8*3J0$6x!oSv
zYmIZSg(m2fN};bzEUI(iJx)^>=t&nA!}ur}*R2Q@>^Y#eQ5jHyQ<dY7xy2BdS*zQ<
zUw*~@Nh2wicfq*fk!B-XB8b!ERzrT-9MCwikM+UIQ<ym*&rdO9fO9iJ7~Ja*HRQeT
z&$8Ud(bma(n)6NA^foA~!m<N<{6G0$|MLZM&*!w4==)-KfELn8T*Z_W0Y>BAHf)(K
zG`PW_34^x;EAY@xT)6+^w#)moM9P<XHi2Zfq0yCbt+vk;$M!QniTRTSlOY28?dA1h
zJ(B+I*!Mh~dAWVWRq+C1>vY;sl{wBX$)#vV>*GMl=|{$=3~<Qp+%6SaKj?ltJP=}i
z9fth-4HEm}p<|$@iCtkCe+64#J~F}q#LLxUYL3a6&hp00(jpS(HnsX9e~&@wFna^T
z-DPO9Rd9XPzl<XeapYn`-Pl0k$}JSc0}UkQk4NOM<I<xK$G^oKCy)#${q}PHjbnw+
zGTX}+Az8QL>#1CE7+3ifa`a&hbQ!3}HrzY{#QhB2Eahdm!Ybusl3#%Rr}+=)c2nWn
zO)Fcuk{y3Bkn_y}1__+M)Ny4jwF_5OKc*j{s(}_sPfOCzMOadl!pb)ziRF*(ObXIu
z5=r>qEc7u6V`usFp9%UpoMxs;Q2Fx>=i+@oXIPwo5sJ6<GY;#xd|#$F>3|iqFe!?E
zJD~y11!ouSh*=o5H%;C(M-p0U6eLTvIk2Gru<xC!U~JuT4t=&q3KrDf7rm2S#<Il=
zKW<DP#u2*x`WjRX1hN<VA6U{fVN7>d?U$7SY>@RVaw78MP@rA-c5(^!DQ1{Qc+|j1
zl;l<iUm^bO9-6W*a>Fr~`#1b!`!J*|SSpX~59C5L$#03r@H<K{G)pZ4Q{R|M<+@*n
zev)h?CY{5Ul`Cs?Rst|&qP=8fl@H^Rt#k%_WSBd($R@n#4#mu#e4fNnSgm%7tRmCG
zF+qp@?5~q|;vB!1k%#|4?|AGHX6t7-L#$p}F1v&8eb(#Khs<CyD`3N8&t+Jj6AP()
zO^WkAu||@&cILNBERTb$JCSV6>%f_IKAe2$wC9mCD{9zYN#&w6zzqUv=jvuOPH(hs
zu{G2|pL|E-`;HYH_!Ppc(H4&jPro0J^tg>Rk1VX7KbM06{R;JwiE(J;i+rEoWruzI
zKVvvjL~&Tx{wY51!kV(Xw|;z$$Myr|S;K?-G5vnT{Ft@@3^6q|K6M|1*jDE7+BSVG
z^41Vx3?adiOBV4Ar<HJ&-{cTkNhXY)u$cSM%Yx<iZmy`EI01OCDBvO=GxnCAqb8ca
z!Kthk7mqy}7<{9nchiO$+6RxyS*eS{+TmaRCgY8;!pncq^V0-OUfa&$|4j`eGR)OQ
z`6jqrUUPXw?*h&!YWpuI1VW3dRnsB=n=reO#>s8<8m5j~9OHk(0VBmX6RY^5U`o6+
zRG?`RHtv18c{4X23t~J;=cl=FWZKW`p7|z@R4cx?!@-W5e)jJke>n#2u44-FOC2!e
zzVx|#C=oYx7K#*p3POhF8TE+blAU;n_9_`k8w?M-Q2bUkfibPa$F6fJU^6+j$QR~x
zOz*h#uB@I876b|_%#1=IrM~&qCmI&$A-<B6ODDsb6REzeW(7F-K)=$5CjojGV>S%W
zD?qCw5BFCyVFIaeR-@CNSJ?ON#IumA(zq#=YyF4i0k+<@l9;hEB9J&9*{Y2>gPR-i
z9&|zS*p$n*Aar&c=ga!XNN;vx+y0m)Qj&YHY!N_N#cv1gRXGuFv3;k#=V`~h8KK!T
zN9^~dA*>Ph7HZhF4+@W)ujxpK;`U@Ar<b|~E*=bbPTH~4m0A~WC$Gh0<u_A>g8q{*
zRm&x7A8`)bA{fqX?wN$9iUPgCuKU<CYV#mS=LIev{eFf=;u{o7%HQx&qJ=qzf($B0
zN+Ow4bmz&d^*FM~MXJb43X6Vh2R6>0gw}yEZ^9q0op>y~WrP1S&aOQ3lDkib^D2AD
z4W|jv!ug=m<nlZ;J-mHF_MH~ABvnkkFCE1pKN9Qin>V4W(Cwice<jR)4{Hl}6bmyg
zrBST@0Z_yBmz=r%5_VjbmU%iE2X&iF?R{m^u+SLd8|f1Qv-{0ODH9WL*|f_jhxY)C
zJm%H);k1BdtE=H#Qr~dY?dIR<zh5vvb>ofE_1!o)pR6WLAq<<vZ?}##a^mvCh@TH)
zbs^O!r%b8f1&pX#sb2n`4Rhz-Bp%i7g4Nz?)#%y3INx-ZAai^TMl!-|lH2HEwYb4B
zn>q-xXf`~Wdp_WVNlof$p*Ju^y{pKj>e!Bb<otV;Tm^`(?jd;x-a^Bc(mDOZBe2!G
z*N^SNAXb0fEPd8}85SZsljO(rv0Xb=_P`TPY!r99C~S5K8=~tezns{Kn-qME_lPnQ
zN!3tJj1QpAf9Z<w+c(f_?W4U=BLUH|g05dqy~4krCGw?CU&W!q9_em=DXhB^MYBJv
z0OoB=DSjTfhpmcDTb@teLxByWpJ@DD{Bv%!$$MHF->Q$=yV>Z%kpBKtZig0dAxGr>
z?e|<TQ6|JV)olsAKLt9<cwRvtYun_6`y?z+btN*eD&nB|)_mo_M;IuoFQWbS3fm60
zuXeHvVdvwli+p^JSmRdYc_^=R$L~m%s!244MaEtH*KS<JnUfi*Rz7N2j@(HxT-ms`
z{gk$;)e>fGE!`9!L_&YU1ztJMi#WmRRBp=i0GDZPXwoMSV+%)M{A*J~=yx&q(G+dL
z{9VY9DY-->**||T&{PW&EwAtz#V+Dsl40$!-gi(M>)ZP&<Rp$9TCp}c^b*@1j<TBa
z%i^>{KTn>E8#Ggg3{J_^LE+QbE&kUXI2+j~P&y<5-POD6UV}WAc=|`~=}dw~zvV-`
z(Xr5RigLro*BiEF$&)glr$Bq$)HBP+Dp2`Xe)QaXY68X5m-%1pv)E(adXjUz0hWC7
z<UdoDLVrz^)vU)RY#WjY$7wj@oJ|L>w0r{0T~)HVUJ?ug7fdykdGcUdTfpm~r9Y8m
z`D>48MJd*ERm8<I7{JP)|2NIg-@vV^t%%rr9;(Mz8&Y1m;gs1Q|J5;Vn7-qe_i4BV
z=H%I#HHV%NXyWW|nWjxaZfB(N4aGRv?nz>`vR!~hvA2R9g#9>Qy<6~L>r?EB56aJp
zB!PhuI_WUqzdQD8d)JFQRyaSuoV!MH4C<(ijtZO@!rb}Sq;Ir>U@^LuaLPg!R=-%$
zE=6SFIF(9aU%wYNaFShCevyQ;CkLZy!Y@J3)brruSurrDsdU%ya4arACJ~OQ2!XEL
z)}*}J*95YRXPgANW$a;!p%2X%#LklfBrH{PFuRJ=x#pjtujBB@r!0M3y}16Fb1NDa
zt`WRdt3P0s^a_z=^)qxHu*r=){tOq4eNT%g`a|zS4%f&iTUdMIePC?E7#6t1*6N>|
z;XnjWw8=skt|<(?W=PM1&GT!a?E1V=^1%J*qxW>se?{5On#T#}Is}>)E_}sadW(@W
zi8rCAW|8v5Vlr;>&k2m03}eHC*3(udmk1;o@`Q$cG#K4%Z8Gbig;Vv!mZGQD&?}I6
z=d+9kOwl)^l<^#_+$xxws@s`&%*-AFrVn@GszXJzG{<pN+xLd`iBmAU<ma)d2RO@i
zuIL-{j$MtBPArTTgC5!QE<=9WL@EjUN9Ef67<=e$amK|V#Oe@T9{;y6UnI!?oA)^+
zT)S&}ZQC6ymzb_)21H`t<M$8Km)=0#?Df}f8;782xBaIaHz}A>UpuIzaCgVgzpf)K
zXpSxGBUiW^%pi3(=uuUfG4|By9^#*C#U28sPLXFmd}moIzH2iF9m`a@!x!SPwKaO-
zxTqI&%df<}j%>#%X7%MjRwi7K)l6Mt-SNY9hlQm-sN>{>ZPTqrLs-32o-0=115M^n
zt;03wu;!rF;pYLVILVpJ&#Uqari$8h_n&+U?RsuMeMl>?|4TTtLzOJL|9QmdN4*T?
zyjzcD?t4S)-$aIQ!A3Y5s)~KR-*8Ha`JMd4I?O42z3g&%6jM}qjxitS!r2>RD_`~q
z!PxS19{V^gSeKp4_B8awzUEbZ<Jbo<@kO`RJ#RM-t$ggCcFu>yxdn*~L1WmS6i#C7
zSi|ACO&vpNXKWrc8hQcyVf~?4r}2h1ft(p7oA_5?-9bmG_3bovQrvnHw`jKGuXuO=
z<#fR2k`)TEsgLl7MojI;CI`;51Tft;a)zxK>kigO89VE>dRb^|1dN1d6ZaPCV_tk@
zlw`w4taaG3=2tw0y*(PGUP(6Csqkze^Dqti`z>1v(OiNW3io1Lt!bEx*=j%YqzmVd
zo&KTt$O>!f6i0^7+r!+1mZQ9fE%g4Pe$VU63maF74xIZZV03!grk89Q`f9kYM)r5&
z(8+Owl#27v{-&AUzf%p?{HNl2MHH~g?(px_>}{+s3{#zITf<fAY;Van5A020`$c{u
z4~NJoSZ<jSVP@YGvI|!du!v8^@yUH!Xe!*Jb6A)Tram*b4F}4?;0Z<ZeJ597p(yCL
z04F;P9J|6udPERc$GI8|m?$Av;mVocfr?NoWjN1%$r<}Km}d`*1>lIwr;P)YB{=rp
z;6SN@6gExW%U!m~!zRkPuiR<_Fx~3O!qC_84>@*n!v|(N1>?V`;YmmgcaDEc$#4Ci
z>GlczRtuG|k3_~(`Q62@gb7soGFPfUZxNX(`~quLpF?NFTEy$_yF`j3X%V%Qo>)6}
z{ARukAI@GI(dhIxg~b?mG1KWz0_h8(->P&CFqlOC@=N~)I?`QnIu-B>nk|-+i`@-j
z{*vOU$VfT@$>+#RKk7?}BznQOD}xLn5m^kK*hmPh>}`=`!c{OM+C8(shYVNNE)jqC
zDG>LQL`8d4ED%}Nf9pK9NFuN@s~?$Rvw-KbM#l4A-wDiImG(BzMTq1ZdlS62QwWrG
z4TE~iY{cE!!W=b1H*n)g>4yvwAtDuzq5GuoPWx-U_dYQFC6Jc2vuBVo6Y12yCMn*1
ziJJqT{lfwe5J-~>*bJ{w6S-bY?{%UUAuwHS8N93^fos1%KiMm&4+GCrrw+xRA(HH!
zzrU`vm%ui6G(BN>96J=l#qLE&VC{wV){(&&0`ra7zP_OYM4HpqPi&^8h}4$noqs|q
zOjDxEcddF{l`~`<I9Q3(*Fqk6DNe!Km(A2vOHmxN>gLN?&4Gn`*m7Rflt{-c`};x9
z!JX;U@JCKJiAb7u<T&F|GnhX2ZG|D;oJhiv#SwRk1_y758OPAaz_x2pzQy?uFvEY_
zR@qVx=GkZMzAh%>z?^^{+cXK0WGnx`L$5#r8RMRV@m0SG<f}GKyq6kaeyA$NS@jIe
zZoZ`Pe*TxR|E(Ch*2fUpU$x%3qs)p^eXPnf3`K<9dzP22q}E`p&?}xg_!5yMLsnwy
zFguY_C*_?5xd(xSR*lundTGae6}+`}Ho%6x)&WIbCD8Y>E=C~W7J-wgPhiz(H_irG
zTl!!5Kwu73e{pl~CnB|6lzdav0&cl|AbX2UIHW+bJs@?GK$@^D6soZZi%yTj8yyN@
zgTH?E)3<iQe)p{C@joxH)->!%o1#8};#eYs{;mj^xwol%Jm?gT$QbK{5%v-(Yzz{+
zLMot5<1(9{_!sD<3*{eM=7sT@sNallA~52OXms4%FCwd2VFAZE2iR_#lp4rLBGUbK
zHjkjxBXYj|9e(GI49p8!KRy=52@}fSp9|tEoI&Q~YqsG;8mqjb-+eoJxO7S2z!)VC
z@_5^*c&ihrmP!<gAH5~8zSG+pTYo}eKACf{`^`N9Gb2l|k$N0%d1_kH9w~$2de=dt
zTkg1_o4h)cagazxy|qA{T!5YO&Sb;Uc{p$9dc63I41xTG8qA$^BQjFfdpggbh82fP
z8cZr9xHb2q(nB+t$VBhjsXXHVYnRo&NWTw*`Ih(J`J*1f=31BV!N4`xGT9k)mI;xB
zKICuxa1oJ)T-}}j+s^%zlhn>VL4oxGKac8OS%6jg)+ym9Pl(hy*Pe&8M#I(;L-W^y
z1tMFee05z>A}%iZk+uqy0g>s@-?!v}1nPk^%4ctk5NJPYqg1#y%&X;pcqEt&^Cb+C
z_t=?;+@B_=uT>L?<b&E4&eAVnk@jwS*LW9k-y2uQSdEjomVd%*Id?yibl(XETe}Yg
zru3h=dD>*qml-yYEEETG8FLNP#XIhW_WbB3=woMWKBut|0sqLKPn@|)N1#1(rd#e1
zFJUjkfa^+6EzFXS*?vE-2Fp1ro40N1aW?I+rsB;F;_iFfA`)s(A?1RK_8zNW#NEN%
zA=3wF2^5XZ=^5r*uxh`z?78<6f#UX==&9hB7_RZ+OXWKP%+?=EKCpNQ7irwh==zUB
zy@;n_L1hb(nx7%klXDfutXOwnnj6O6$R<Kr^(UB#*%K)I@-z;b)b|l-m2s8Pa6^!N
z1s5*(6Xma&!YtP!6<w4wbgt5tu}RkxSv}ZAIWB(3B~BIFh2};gWl#uz#k2`5dU*8G
z$SdQtBZCfUECqqJmA>-ow=|qsTIAOYDS^$EG}-i%YOthIz++PQ3udRe7j9KPCXi=*
z<8BB(Ngz|b@7ulFMqqj@Xn%=w50PHaxzfoXhQR1@@ms@@leiwIT^JK1L!{FG9xu7?
zBh-&SrA~ED#3r`p=A$bTILmQdh2{A#7*#ueNa-*YfwXJ*x|ZiYTy4M5Z+=Y>`lzG2
zpXu)=uzi{eZKdUcuC9$4DGeKFYl~e~5S1aaK#;9gfG>1Esr;4RDoZ3MWOI=Ox8S@!
z+2gyvDhVtD`V9f%L;^eaD^YP-VZ!e7Nh!>?4#MKFn(jk|Hk`2V_7wj37B+o8-uz=M
zh)WBjDKXuF#9j7BJtf|}B`{<diOFX$z?2yWYr?(-!tQS>Mw;Tm1d{7#JR<X&U}65N
zvspzM&PF|}Nl82eGv(iz6rKBFTsqll<ESJ0@V=V3(nSJW!r>y84{HeI!98L*;<ChD
z8LtAk`Bbo9Vfl8*rQ-xfy_7_Mx7`F*?jfyc9Whu>3Lu(AO~5)!h`>!9Is!F)bb<I=
zb^=!y{k7{a9zgNNVA2-V&OG+`8?|^z3wlpvT)6YdAKM`>OZ?MIB75@>&-YizF>_o`
zUo_ztZlpZvUN;-tx!)QTFCQI*xs@?bgTkB89BFvpQ~M)MR4I2fB)lTh=iR5(rt^cv
z69xwzcI#o|q(f4U_W^7~49^=mhxPeeZA)IiaC_*<&nl)M0tFe(3ty2EB8B9Hrd?(@
zku_ppYf5Mo&L;46>tA*xQtI(ar8Nd%`pxn0SH>!dtdHs6w`NlAgf-)O%+At8ved(F
z@BdiAO3K%}cO}CKWMzhqyzlPAc2M{^Z#hbs=|0>_zDt+D@+MS5?1~Z$?BUN<A27tR
zEsY;bC0$UFDSso<_b#l?*l+enDd3QSqeaF$N$i<?x{$XeL8Q$$k_)Cjk4q&|_XO-b
ziDX-Ug+A_bge5Q5yJ0Qwi6s2Cu9@~f3CzN)T6|1-I2ZOT(xmDOfijPaD}ebTE__V2
zjnAAXkhgGYBouDI=GTF)KM6_LcU!27TZN0Tr-Im&?nWfiNqX5NuQw4%bamTW&)$Xk
zxo)A%J(;kgZu!?cg_*#qTdbve^%%|^j=MZU%Z^JCyUuRheusk(_I`QzcOQW)H8w+5
zs1oK31HKw=c;if!qAB683RZU9w)O7ehpo^%G>Kjj1iHYm7U_<7=(~R*<ipXoL>Bdz
z@w+cI5$WY7wO4jGz$W+g9?QEXM1~TZ_(X9(B1K`_+an})L>9@DyDpPlg_VHIPq>V>
zU{>iCn_kc~E*|I4HAq<?lAp4p|9XyzKygP^*f{<y&h}m!&|6T4m0DIl6RrdzO~8~&
z-`igV&WKlbG!GbXT+fMose~0aO-gf|X8mC$IaTs%k3Z&D(GkrSZHT)P<;dpi_Yj$a
zewe?DmB;m>IBRA8GuU%gES$%{k3iu}eLZOPAc6MV8JiP9%>;^hhL9g$dSLbVfyqea
zPF!z)*_6Gz61G1T#@Bf$!qPPclFS311eU8LS>fl&aJg4w?;n$gkig^AVkzx}F)wJp
zUoBg}Y*G&Ow?TC<{H@9?-`<<ZZtOfe^^$`~-%2E1<Xt5)rW~`^wiO|eXa;Ht22>Gt
zZ{Cr*M{7VJDUf}Y^wf$#vhZwAeFO=CIjSYV!+ef#P~>yC%XM#D5<2#jtWuLe?G@E1
zclb5V@Rb<Ui5B3ZvJC$`*Imq$dO*%Y(?X<i5DnH+qQGWZuG8-weDPz#*}M?-P9ptT
zhr;d0;;`KKXy}j7cOuQZ>Z^H%yK$g|m*vKzV?+kJj*0xCE}WTWzHb%sg1~%Sv2}ue
z2FK*Qsw@61684CzMUI@-B#=dYd6HnxKqRLFgO|mLL~>>W-q(FRxbdv*SbR+wfsXm&
z*K?1!VMD>vsBtL=$Aj9=U&sz7FxQYMFp-rLXi|U4-0Pbol4Y%rj3)IES#&>f`15n&
zs*rN48rx-<bST(%ljR{WRo-6TdXPgr@Lol$!h0SY3S!hmU+NIa$GJ3?@5n;uf<Niu
zbvE2IwES6oFpxmSS|99XyGCG2_`7bHq7IWseqZ1Zj3rR#n|;0SaR9om`GLW>C@eAc
zjhLbVVOQU9QFJ;NxOtnINM<?V&>QKu><<Eoq^!qdYPb7vtvp!doc=yots8U>!6^cD
zPRt{4pM(|K4eoU7H6j)Lr3-Dc{X6rNBeeZt368e2cgatA5NO9&7EO;dVO1pYMY-mC
z0(oZjn=)%z*k--*@Ss2khG?4%7u)6HsJX7!htyywzpBQvuSO24wNHxM+x~*J6ZeG#
z{T^Z`uN>EfnJ8Q$NWCP~M?)Rcdi^ykL+lx`bEuB~j>CK+RRbc&p~+`OP4k{KjyNtq
z9xG_WF@|uqvP@=3&HJeGyfg}CN#j~kgbPQx9jAD9{Gi#VF}Z4cbFg*urM{CJInMtO
zy!%y34VMm6QOPGqz?Q}1v+lu{cJ$!Zad#sarnGM}?+;7C(bzGnMwuumsP3{J&Ao%$
zjAw_=%jV)>L1u-b4I8$~9Xk8)9xwC-UFbC`@`VBF`x)AqLa<@(lhz>M3Tp>*ocRS}
zaXOP?JD%egtYi*+);m*-L$h_J>brFa)K4fPt+MDK|8GOtC~-G5?3KLU|5FSnCr&Es
zniye;!@b90gN3+gLYWkFy$7}*WJ$V3G+^5ows2<8_#MBLg6yyN3^si-%8b3V8^*W!
z1j=+TLh$Mfj?Bm7xYTdLsp;N?YsUw2Lm7`@d+lfKo02<z7n2wr4<|zP2{$jQn-?I3
z#!2`?<4r7hq@|t2g)qj;oM96&1e5Gx+Q+{s!Zz8y`$8p0vGLWN`3ChAj4^LKE@N>J
zdihd9T>^f<(%M;?Eh8!T+oncF>9>jz4naDmVi#d4e2>tO8z(lAkDs?0F(i<^ziq4g
z<_T1$)Cn8Ec@D!V9&JYgmvMRK@P)BOUaYy~V`ZpdhchoUJwJ_Dqo-(@v{FzAq#sQ1
zes^3A=Y>_vGxhIb{ro8n*RKlDZ*+X4WY2yW4GJxj&x^!v7SqY(>MpFR+uNTpy@V|y
zE58T(9kK4__GiEHEtn2Cob)nGddKeGl!z3u!6g|(FZzR7IC5S2;j4(35F=*tIaBW-
z4n1Iu_*Hg}NYdh|eocN4zVPx$@4u6dlMUZ$Itxx?JEQEwFy&eJ`SkgGaTOi*ov;`C
z!5xmp78iajQ##?y{F><=!73Q!8!^@R%!$25(ld;YgRy#e*XZ}hMX+oh!u)e~duM&4
zQP^J~gEPhU7jjyTLz&>CBeKp#FtSfJtacv}d&We(eomV~YP_P?Zgn!~JYALGGWQOb
zf3efo86U;LAS!$l8-!!-{$wq113G#&UdQeCCy)+W4%Isp!vOO~SILGTm?_HIo}Q$D
zf@T+m@RHroWxbTgqp1e%WuI;4PNx#dxt(8S4pk6Hbkf<lpK@T+U(4U#EDvEi=)llB
zzW|(eK1)<FD}hlhw|)1bE<z=Dsw_i0D|W|}s+k0BV*lQx!sb99ED+36UA?Q0L-zN%
z<)(IHSDoqCPS#}X{}g@y4fQP;|Hygwv62kL7MHH1npHz^>Pvxp@kgLWnDSZ52R#BA
z!OqdN<{FWtpW#Zf1T!>q%=U-;Y=*Wa%G;Z5Q!uc=D4PAC0)M^xU2se{8`r|R0@%U|
zp!)H3Pp|Pj=*lMJNU!XIV2`CZ$qRfi=|?ZuIGc#b!I0oN@E50Q?@BH>b7Swxh`KeY
zqZpLnK1K2FJg%|Sbwu0OLuG<TMxB>CX4QP<VcKlL>Ae?HZ9I5zKABe3+4=@P?2A9w
z_eBH7NSIYls^-EvulvV?yBJ~aR>fhLS6(o8B`>K>=rm5rvp9K5+CxKUB>8>SAzV3l
zjgT8~0)|HGM#o-WhtS{VzA=KKSQlKk&3fw?E`0MyIhy$ZMiV<KBKY4x%f0ht_i}#V
z?D#XA3A!zu_{<~XAV~^+mL5YDhPz;-cu6+o*k0VsS%~<czz8G3r#Py+__2SQ<7k{4
zANE<?E+~+`gRAa~4O7RC<Lq|N(Y-H!;$&$T!vnsnFjgR{IjNKi{hZ9dpE`y>-pfhx
zvrH^lC932k=H-P|GnA%8irp~J5)v}SbO73f0@vr9)FJSEi+!+uBUDzKcb|&*2s6RK
zYBR*WFzwVf-}IscW<-B~e?8lbOQ{boTQ4f(xT||8BlkSE3~mMx0;Vumb%x^**BO}k
zD!)~C?GDb>#Kyeb>w!HaXG5$l$8p5^L5sKOHjK3&4v`xAjWut@3FnSlz?4R-c8YE{
zPAGTzDq5{V9{B|0uD4}7<LfFo*ZT;z_OSP}==Q;+y)&f&$qA@XmzLwMRl`|PM!r+$
zg<-B?yNc1f3~J`&%+^O)afx>hbSUI;L0Vjbo$@S<ZDkG~Qsjmynde%nqvo)vT_R%B
zGK~|z|H|at=YiF{><2YJq@maCgF=az2lmZxoDToPzO$ZWoR1^M!q}UQgA`xuU@5-D
zsqb4pO!CV1kZ29yP_f}OnOO`>8(7F5+vkkMhFirlRjSzUAhXQs`wjatc;&p4+hHYJ
z#XscF5Y%{S3{&dlW9&KPq?ww6deMN77i8pc{NA!r?7^$p7+626<Z}&LRhUEt1i4{k
ze0xjsWEI3lI8?HrDUPTs1#g9qqRZ!P?R5Dk&~xiUBJ22mSm+=-|1x3(7fDKg(~1b=
z(y-I(W2drV2HsiZXR%@jedWWic^Xi|y{rGxT0Hj2Q>K+`Z)5LFpLAyaB&PjD7d7u*
zSSC!Xd1mE9kEl$>?TlWS_MTzCvG*3vzjj0OXH?kqdcBeSLJ%Yunq(iz6vwi<)!Fiv
zeX#I2+U&!WAI#WayQuS_3Yye2I-WEK;ov=m4ws6Z=WO2rM&|e{xcqYeUH<QLFd1H;
zDBQsST`pObUI*QA*5K-~r-7v~o5f0LM#+uK_iCwAzcpjM%SgF-b|y?@UOlMrX$jin
zUG|%E1VikLBKf~`0kF>A;vj=zIH>xdZ8QEhw8q_0OS|d}wTq$icJ+^8>Bd%tS3?V|
zopG486F&-_kExgr)y?4a%e5}yOle$lc@*C@aU7@2s<MhJD{)!RCi+U10*pr2?K#kX
z5^EF>`nF!%gt`LH3dys_VPNje(O9u_u-=gudn>mBXPpnLNJ(D8C2e+t(76$8HEJ~?
zJ>QCxaji-P(ac0riky+7mkVI&&U;n4tG}@3>ZSe4d%a<6ygRmEpABZJTvoqWT4R3U
zDZWI3GB98pP`v3J4|Nx1Ma#t#A&<K1H{<?7>_4kYcA4@a^w8gEQ)jykgN0kizIrO-
zdbU@vS1=upT^<vqw!RM4WTHOo%K11$8xk<?NsX>7kNDYN@?%azobg?beAsMyn&<Vd
z9A^(+SNE}{!l_-M#U-B2uzr-!_RMQHSYpnpR$i{dWwE^;7s-pT|KxP(dWAczxJ4D-
zc(NB~Sy~?~&6GlMVN7J3@&?2g7~V<Qr-jo?L#OE5&)`~hpSR?r6zq~nDt!970hiy#
z4!S5$V`I<zfM?Hwh!k?a>78TfG3)9ed6eNY_8lM<+FU*jgWp&8<T`QVklN}`bA^w%
zFyPS<-hB+)Xb-xE-8lkniWa%nYF0S@)K;Q%!~(|+GngdZO97wne^8vah07T?zeky{
z!bTp+fYkkFY#vEWKSCXbVZRqXCS16J(_I$K-E3SiLCvAtMtBAji4xj-(*$AARaD~O
zm&dR*vM3c~N(ueCe0z1u?XYLIk0i;jpGbki8sU;gFgLu^={aTsBQHYkL>|$^S^Wj6
zVLfu}edEHQJ7A2J!v}U1NGoC!jf20g2p5d$Y}aw})x%V#QX|(NJLu!^vTeQY3#07T
zy5yH{z=+H92><WCI7WN3Kh~rG9@k0FG+wm9){x1i!?*vy()p$*d?md|%srM}BJ7T%
z^p@snlPfT*Aa!)4LlNhn*E3KIu0Zlgo1E02Ef_ppdMr>!AC@qvjjpQ$hfJowj~YM3
z>HEIF<$~YihE;~0?BQ3~Ql0s@)#N*F-Z$ep<spTArHzx1?M+}bd(iso%O33SFJSYc
zal|>Z4cfyFDcEkseN^I26wIg}p?sJ77mH&Kzhbo2#qf(=j^9envDRPHDJ+K+x4T1U
z8J8~r@yGtEkku;a9n;H2Ra0zP@f@~wl)>8A$sc(vmvLF5Eiy_a633fNsJYy4@5E^e
zN!8syp-)ld#xJ9t>s6ObwGyZS4P&<N8SUsn)-?B{>^3e=I(FsMRpQ*1`J+R@JL4~X
zSe+ikjROiHjmh8c!CZ}0fDg|HZ2H`*mOXtLW~7{MGrSDN{^WogF)XUM7@L^5#&{I^
zqi;M~ytM*-Mcab5SFCYNf6zutZ3ssB-7XQBePFeqGRG?5CC)uFAd*(-;ozCh=Fm?e
z@KK|0>6Ex44vg5Oeqd6=vCUhXq*_QMl_Swmxjl)we!s3=I=+O<jbAFwgR*d<@vT=_
z+;f~aNNF*9yc;Hbe^zJZN8!AZSx3^vSsZ-yLHTf}C@wGPlea2bK##K1<pdEK9FVx{
zU6F7c>vZcK8h0hZ$j0}gJ~CFE`1($jPSz2c66bF$edopnYl<T8t7l=`>NT&f|6#1_
zEf<OaOPqf0^K3HkFZN7TD19TT#3_NXIxX{c%=K-rDC0E8p@xL_*VSo=ls!Htz2wuN
z=7-o(8YNfkHu5hprKtsb6YRto*PVE5+|6w^eW#zCyB-I+L+?eWmt)z<5V~R^&%?Hh
zKr;WKz^E%97Im_;M#U9y&f&@Vm-o2fFVzgA^AjqFOf*RR`}!*MOg@de<M0D#G=Erg
z_xnI&#qn<Wm;TtT^w}$*lN)>dJC}8z^57gz#RY*2ZMb<{t-3}r3i~<E+m-rALQTcB
zG!*85iJzY}xNcWt?eA>PyMg4m?5t-$v->KJY)?KJO%}vyU&AD^<$E|dnMCsZ<0woy
zC&?}L8Q}Eo4V7!P;jmyV!1*=V99NUxI?Ab&;PCe|cf`~0VafKnAn%twP{EVGJ>V?`
zje;|*u4n29q)Y*<bT27!o>_!Khh7yH3XW!p>FmYMVj0<+X9lt1&Pe}~1vO0WJ^Yj2
zE*pAfkEOKnDr1LT=)e*+H{^Y5Vwb(IhP~x4Iae-=5$P29t807rK|gP%qLY#bfo!r{
zCp}po+vPtLWNMV*%;eIWG%HuEUJO2SJl`0$WY%u#+n<B^Bfp0tzYajXx$<=}x(OUR
z&1%2L@*plW=jZ>86vSb{2N_=kbD_v!BDV9fHVl0jv7NsWiwlmvexlxXxMDF@Z5bU5
zV-`J6RBN?i>lE#;xQ~0WR4g%Z%%cWpaGo%6BNAE!hHJuZ+<;z_pPrB6f_C&Yx7q1#
z2Wzhr#P8=&Lf2ZLZrgVnY@|s3b7QFrM!(~}h-7XkJsJ~Ao+t$is=Uh!qwJ7&j7|OP
zco1$Jo4=a2=z=o^5tZ=@*P!jwt+b&R^RU@zEu-;H4o5BX4cD2iprJ(Al-xNVJ9Q4G
z*L~S(pD*+b&jCGH+UPvfdiE3KB;0T4jTgb5bKkdQ-0gAUSy1j4$r-3KxjXpG^cl`p
zTx(_9eGz(lIfqrh-NeOHcO~}K=tA2={?A)!J}`gy)^Bp2M63>BquV`44dXG_)&(ZN
z;&zCVvAfa-9GXtGYwwanyU%xg_g0qSLZP&N!+a7pF$XZcj$y;T_zD6Y=YAM`Pstl<
z{Q)*<6mE|n>4ZM6wvSp-e6aY_!=BUmJ(0FkaNUBr9I8Iw+*{)eFjlR~X;b|a#?Fj9
zbt(=;;v&!~KH7(UQytmVQg2|CB;+a2^9<;zDm+2s6$kyU%g!G5uQ2OPY)t4XId=c7
z=DTuyFE$<f>bg&c7s~6$&T%>x!RSik>5*khBAH9IOnJlr_F775+|RxNON>G(c4sdV
zX#eC2pH8fRh2tOp^7T!@vP)pBh}&Tt^!uDrw8sbsv&9_rzu$%Kz(2pN9zDmJ@ofvi
zGnKfpZ|I0dk`N{}wDGA;R6|2(%O@qaoptc{bAf|GmbkiW#Jg@@2bNc&m4@a|;Y@?g
z=iPtoVRk{*VD`&2_D-c<dEt_X^^+O#i64hx=oif~?a#&Fds;$Qn13$}h2&d!h5KT`
z*-+z7*H$74vsBLyQ*#2@tEw}XRSw`p$$n4D7*T8rS@?A%SQA%TT*(Zx`>|k)?y?M@
zC4r<ODCUGuCr%Arc->4z!~r438S*$UY-aL~6b?VPv#x8s3Q2khGs+|VmnRmm)8J%$
zi0T1YILj+3yQzo)shW)fj@20VbD#Tw`aYOAHy`)Tu;M?`?PS~k;~e|HpELaTbo_tF
z$o?Bo`VahnFDLs4Iobb2{?F?FGmL+%^N;mO{|WB@tl$5mHvg~c{<E?CvvL13{C{lg
zpB?{Qpa07z5|rlpW=2nT80LT9hu}X>lHT}FM&~~-yJxEZ<jH^N^}p0-5ZBZ<H?%Ml
ze_~{0_#Zkav)U2+?(nu!v*Ho^V}sKq)ZO@z%sVjpX|DWHjza!t11s@+lWZ$L#~-Pe
z>Ql)3qGjplKIC*^-&Vo;-=)%@N*)R4FGjqh<Y$@T$=;J$4eKeq;#Nj~4I~a6VS3SG
zd|Ua*A-?Uxw@TOa#G))e2D&|Cneh9(n0hgNmDpdbCZ3~XQ@(#gqU3?c<d_U}OxUmo
zERa6DHuHchNUJvVG@H))Q7g95yDKicB0ZHJop5)29XNF9{2@vPRgM!<MD>uuvk8{O
z9MhJHj^GasbL1Mqso!Fw3AEC-%!$kIIRexQ)>353*rO|!<6V;Lb(~H2SC2%gUaEL!
zXr*FMF4LhkzbiWGwJ@8bb~|&KnxJH!-_JCma5%JWmRv%uCVe_);_uYcTZbEH&LNvb
zGM_rtqK0A=dyB6_Z;MOLZsn>2NBwO^Zmxe@>28$!sHFcY?Y^subzhCcfjXMM)HjW?
zQsm!9u`L@G+@dB^G94{frV~p)?m-L_rIvQiTc>s%Pi-F3Os7(|4|z^x$t>aeV{<%h
zp_<~`>j>^QQJrNu%c87;V@!-M?OJ2v&W>$-KfO};YN08aH<&<fwqjD_A4_he-|1j!
z>z3uJNm<)t_Un*+mEKWW|EA{p4_y%qCGqAoyE!hsNs`F-k*_<u%T4N+THyMTW8x8M
zL8^99rFIHKGt+gAvA$v^D~mPx+Kmg#O?RDX_(wvIZ|skaOSHLP#4XifH@j>XGLXUD
zm<Wbb4|GIc*|X@W36ZaGdAG0mU1Kk4Q)ft<&Y&u(J#VEII4Bpy<C|;Wx5gr*OzZ7*
z@GeKNyao3NQ+dtcsbHoRho>UtRj%@notT@iKZshFp4_CmKezZdee9-3hm<EXdF?B9
zyUC*`ujCPD#u_FsO5Tfzr>n4b{8=jh{E4YW)2#3l0lWu8_|ns5@O|?%F<|RgvGo;W
zg?HI6oAy%pO@EqNHS`%jFdM77Rolq<C6`AuM#{l4aGUlf1&i6AuRke9bEEU@AF1}J
zJZ)!l-jka^^ZlB%74@PO+nb02<F{2&&90AlbgVPg9EWPsl<AM~Qxj_p`h4GPPWg$R
z`NCQ@8KY!-_Vxx)lQ4*kXCwsl3To^QA;z{_Tae`8mck_iy|FUCUCs{-E{am{tS+Vx
z&bX)Pewc82y??OgRJJD%DW&P#<m;@;nH&c`bX~4_ak2W8RGfW@@5|85=9P82i@_C@
zCvU!`dL%<7bH3tJz|m&ERcoz*U!Gro?>X1~IwW64M3wJkPs}r$7CPCmcdu>wJ_aVA
zdus0`Fpzg^LSOEa$ZoyQrQ^mVlzckXA0KlLy*(YnQ)9QfJH6BRmd_)GnsN!RZ`|$O
zhA(&&%x}bnP~POCsX2Gu)mSfaWsLrUm!{1r-JGzkDXsB@kNFu7I_C#?;giz${Tawr
zqC=si5nGWy>vu=MLgd!TFP7nVdUfgH+i7`0Ub4ef7JD@3FHk&K<R4OEemE4C@<eE@
z^{xCAZ)knL(Gf2_{oZ-wPpoc&pMF<T#BN+@O0qkzR{kh-{?fzwJ-gp{f60-H8$0GE
zKvSlw;phD9lMNZ2Bya7Xo&y{XBjcIIie9nDX~OTB`tk;~9pR^Nkzg^S3{UG5DZibc
z<J~kqN(`rL=P>a7k(I+vQue3jL79yx6@>iM%+){tp*qujmw8gL+SSl)(-G~cwLf}3
z2F;INd^xoITkk`~#6_x{b7HQyZsZ|-%eU$IBZ+27PnzG-a{J#`<a5+5b~-I1A*D1!
z&v=xY{U&upcmv1#YlHQ<gt?2|N@CG`FBw1V6<8NzGvtpGzBkzWn_K6t;SlcIziAY~
z>q`-CNNQ43C$=D(P`T+l>r{DnXqMOF$Y~MvRB@y8F5l{R7aqD~7SHgNYm79WXVTZk
z_VL+)7`j&{s!vew&(+;+<RkE5p#8kO?e&|7)xNw|rd>It6Y<wN;j-*nixDG8rYL`K
zi2fi~wx&`1LRC(ASx(<Nf<B0=>^$cW6SbAg+zSPrsyxHxgR}?OY4=j?7ury{%y^dM
zrj%ddbW*?tJ)x@2zF52Oiz+U4TT2HGBQ&+M3>?#{_WU-dNj)|3=ek^#rG)VrfvmnO
z)bY*lLV7iv=#Or~6Y+HF$(Oc?*)){N7kMT=tNR`?_DbstW9A^gpKDZU^nzzx_)Jh7
zduW-*>AXq*G~MxYuXd@-iT6|K#jAWTf0L_yhUDFnWEf9!*~sdx$XYvtM^PU#e@ZaT
zyN76o*&62G5LEpheD$sJtuuMcQhG99JO*Ma`Hp=Y<0E~SmNT<0zA%19@k-J~RTsMl
zOW9^bjieyk{Ak6Rkwz)0!)DG>Uv8w7TG(Aoc*-0n#P?Y7NW_gB>mx<1F68a4LlrOY
zc>gsmSNP5KQNl^EeBlmb_oIuW18j7Av*;bZn^_%lB;BK9$7nr%L!5<bQIuBe0nfv-
z>V6Z7#~)>Q)+^>-gw57n5Ib(qtDY2{<l9#v-k}y8)SdcH!H8m0G9)~+sw~V{kL!r0
zNc_aD!|jqr<EabJ%5(QHbmYI|z3B2@akN%|okf7HDmnbaiLXcR{%Q3hLeLxD9xHjH
zsnzMpX6z<VjGyJ-$6D#_5GxqyJUU%)bamS}Rv<%L;(1lu7R@hpmzl)uGn)^?T2_Qi
zuM)$w2<Fr}Ri<4wu2Scs;+Ajm2`_fj*i%OF&QrO4ykZkVf8dGdw}jqz?1d3mo-*IW
z(DDJ3E#dRh3W8&!tb|Fv!g?v6gZ;F>Z>QanKPdPiFf+T!>ot?yvyY#CEcL!yn*4L{
z>aPglMV_gKsl&|ySL9T_jh=Ql3auXMy?AY=_d-S?^X<51iwB{;H|2Gu>Du40=QoH%
z5%Y=CYGctE96iydn_|Z#OGKS-DgP$;oeiP*s^@OzM?QDXfhP!EQ_|PX9+CMS+%=@q
zn^Y~V6;eGdBmREFQ?0=Eb%J7d@39=B5P@ufn*SsX%NyfKdv)<a>ae%NCKZe4V~Xk;
zt`USu=u<s6&-ENV70OkVtNEw-%qzO+v<%LsjVnLsYGW|Q`}M5nyaUG{(^u@;9mHMT
zb2TKp;?B1~fz<Bq@_dS}seaY3(Zz2beUdmg>mq&aqR+g_4N><vzK`WC(UEN3zlGHY
zJ<aq3ycynq+rLiu<}ROVU#rv~Xt(WnDP(ov_VRf4EqPwHwyCQ>BxTuy_KC(xjz8V|
zX+UJesWqVdO85;XBcO<QbHn`V7goNgilES4s+ZDcMVhvjSM;uGE#12v_~~Ln)lOh)
z`S28t2mhA5vfZ8`uc3JcZpIH%`xOtRZ@jYg;zPFdJvo8*=eno9Rh@V5_c+=T-Ei^O
zxF_@XC*Nrnp0VW%^qv{FbXN3ZAp6HHs}zj>eakAQ9lnG>L-N0b{)PK5`rm<w|E+ZT
zC*}WL`p<g*4EO&j-ao_re~b5zxc{Pm(SN1?^6u#0_D7`qZ^yscoPT`JKylB)M(00m
s56t|p>CwM%|AqU%1MdG{`~5H6f8qXrgZn?TJtSNI2e2Gl*uqx;0L*yv5C8xG

literal 0
HcmV?d00001

diff --git a/pkg/data/script_data.R b/pkg/data/script_data.R
new file mode 100644
index 0000000..1585337
--- /dev/null
+++ b/pkg/data/script_data.R
@@ -0,0 +1,15 @@
+m=11
+p=10
+
+covY = array(0,dim = c(m,m,2))
+covY[,,1] = diag(m)
+covY[,,2] = diag(m)
+
+Beta = array(0, dim = c(p, m, 2))
+Beta[1:4,1:4,1] = 3*diag(4)
+Beta[1:4,1:4,2] = -2*diag(4)
+
+Data = generateXY(100, c(0.5,0.5), rep(0,p), Beta, diag(p), covY)
+
+Res = valse(Data$X,Data$Y, fast=FALSE, plot=FALSE, verbose = TRUE, kmax=2, compute_grid_lambda = FALSE, 
+            grid_lambda = seq(0.2,2,length = 50), size_coll_mod = 50)
diff --git a/pkg/inst/testdata/TODO.csv b/pkg/inst/testdata/TODO.csv
new file mode 100644
index 0000000..d679966
--- /dev/null
+++ b/pkg/inst/testdata/TODO.csv
@@ -0,0 +1 @@
+ou alors data_test.RData, possible aussi
diff --git a/pkg/man/valse-package.Rd b/pkg/man/valse-package.Rd
new file mode 100644
index 0000000..534375b
--- /dev/null
+++ b/pkg/man/valse-package.Rd
@@ -0,0 +1,37 @@
+\name{valse-package}
+\alias{valse-package}
+\alias{valse}
+\docType{package}
+
+\title{
+	\packageTitle{valse}
+}
+
+\description{
+	\packageDescription{valse}
+}
+
+\details{
+	The package devtools should be useful in development stage, since we rely on testthat for
+	unit tests, and roxygen2 for documentation. knitr is used to generate the package vignette.
+	Concerning the other suggested packages:
+	\itemize{
+		\item{parallel (generally) permits to run the bootstrap method faster.}
+	}
+
+	The three main functions are ...
+}
+
+\author{
+	\packageAuthor{valse}
+
+	Maintainer: \packageMaintainer{valse}
+}
+
+%\references{
+%	TODO: Literature or other references for background information
+%}
+
+%\examples{
+%	TODO: simple examples of the most important functions
+%}
diff --git a/pkg/src/Makevars b/pkg/src/Makevars
new file mode 100644
index 0000000..50b7fb6
--- /dev/null
+++ b/pkg/src/Makevars
@@ -0,0 +1,11 @@
+#Debug flags
+PKG_CFLAGS=-g -I./sources
+
+#Prod flags:
+#PKG_CFLAGS=-O2 -I./sources
+
+PKG_LIBS=-lm -lgsl -lcblas
+
+SOURCES = $(wildcard adapters/*.c sources/*.c)
+
+OBJECTS = $(SOURCES:.c=.o)
diff --git a/pkg/src/adapters/a.EMGLLF.c b/pkg/src/adapters/a.EMGLLF.c
new file mode 100644
index 0000000..f24cd2a
--- /dev/null
+++ b/pkg/src/adapters/a.EMGLLF.c
@@ -0,0 +1,91 @@
+#include <R.h>
+#include <Rdefines.h>
+#include "EMGLLF.h"
+
+// See comments in src/sources/EMGLLF.c and R/EMGLLF.R (wrapper)
+SEXP EMGLLF(
+	SEXP phiInit_,
+	SEXP rhoInit_,
+	SEXP piInit_,
+	SEXP gamInit_,
+	SEXP mini_,
+	SEXP maxi_,
+	SEXP gamma_,
+	SEXP lambda_,
+	SEXP X_,
+	SEXP Y_,
+	SEXP tau_
+) {
+	// Get matrices dimensions
+	int n = INTEGER(getAttrib(X_, R_DimSymbol))[0];
+	SEXP dim = getAttrib(phiInit_, R_DimSymbol);
+	int p = INTEGER(dim)[0];
+	int m = INTEGER(dim)[1];
+	int k = INTEGER(dim)[2];
+
+	////////////
+	// INPUTS //
+	////////////
+
+	// get scalar parameters
+	int mini = INTEGER_VALUE(mini_);
+	int maxi = INTEGER_VALUE(maxi_);
+	double gamma = NUMERIC_VALUE(gamma_);
+	double lambda = NUMERIC_VALUE(lambda_);
+	double tau = NUMERIC_VALUE(tau_);
+
+	// Get pointers from SEXP arrays ; WARNING: by columns !
+	double* phiInit = REAL(phiInit_);
+	double* rhoInit = REAL(rhoInit_);
+	double* piInit = REAL(piInit_);
+	double* gamInit = REAL(gamInit_);
+	double* X = REAL(X_);
+	double* Y = REAL(Y_);
+
+	/////////////
+	// OUTPUTS //
+	/////////////
+
+	SEXP phi, rho, pi, LLF, S, affec, dimPhiS, dimRho;
+	PROTECT(dimPhiS = allocVector(INTSXP, 3));
+	int* pDimPhiS = INTEGER(dimPhiS);
+	pDimPhiS[0] = p; pDimPhiS[1] = m; pDimPhiS[2] = k;
+	PROTECT(dimRho = allocVector(INTSXP, 3));
+	int* pDimRho = INTEGER(dimRho);
+	pDimRho[0] = m; pDimRho[1] = m; pDimRho[2] = k;
+	PROTECT(phi = allocArray(REALSXP, dimPhiS));
+	PROTECT(rho = allocArray(REALSXP, dimRho));
+	PROTECT(pi = allocVector(REALSXP, k));
+	PROTECT(LLF = allocVector(REALSXP, maxi-mini+1));
+	PROTECT(S = allocArray(REALSXP, dimPhiS));
+	PROTECT(affec = allocVector(INTSXP, n));
+	double *pPhi=REAL(phi), *pRho=REAL(rho), *pPi=REAL(pi), *pLLF=REAL(LLF), *pS=REAL(S);
+	int *pAffec=INTEGER(affec);
+
+	////////////////////
+	// Call to EMGLLF //
+	////////////////////
+
+	EMGLLF_core(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau,
+		pPhi,pRho,pPi,pLLF,pS,pAffec,
+		n,p,m,k);
+
+	// Build list from OUT params and return it
+	SEXP listParams, listNames;
+	int nouts = 6;
+	PROTECT(listParams = allocVector(VECSXP, nouts));
+	char* lnames[6] = {"phi", "rho", "pi", "LLF", "S", "affec"}; //lists labels
+	PROTECT(listNames = allocVector(STRSXP,nouts));
+	for (int i=0; i<nouts; i++)
+		SET_STRING_ELT(listNames,i,mkChar(lnames[i]));
+	setAttrib(listParams, R_NamesSymbol, listNames);
+	SET_VECTOR_ELT(listParams, 0, phi);
+	SET_VECTOR_ELT(listParams, 1, rho);
+	SET_VECTOR_ELT(listParams, 2, pi);
+	SET_VECTOR_ELT(listParams, 3, LLF);
+	SET_VECTOR_ELT(listParams, 4, S);
+	SET_VECTOR_ELT(listParams, 5, affec);
+
+	UNPROTECT(10);
+	return listParams;
+}
diff --git a/pkg/src/adapters/a.EMGrank.c b/pkg/src/adapters/a.EMGrank.c
new file mode 100644
index 0000000..b1dad9b
--- /dev/null
+++ b/pkg/src/adapters/a.EMGrank.c
@@ -0,0 +1,73 @@
+#include <R.h>
+#include <Rdefines.h>
+#include "EMGrank.h"
+
+// See comments in src/sources/EMGrank.c and R/EMGrank.R (wrapper)
+SEXP EMGrank(
+	SEXP Pi_,
+	SEXP Rho_,
+	SEXP mini_,
+	SEXP maxi_,
+	SEXP X_,
+	SEXP Y_,
+	SEXP tau_,
+	SEXP rank_
+) {
+	// Get matrices dimensions
+	SEXP dimX = getAttrib(X_, R_DimSymbol);
+	int n = INTEGER(dimX)[0];
+	int p = INTEGER(dimX)[1];
+	SEXP dimRho = getAttrib(Rho_, R_DimSymbol);
+	int m = INTEGER(dimRho)[0];
+	int k = INTEGER(dimRho)[2];
+
+	////////////
+	// INPUTS //
+	////////////
+
+	// get scalar parameters
+	int mini = INTEGER_VALUE(mini_);
+	int maxi = INTEGER_VALUE(maxi_);
+	double tau = NUMERIC_VALUE(tau_);
+
+	// Get pointers from SEXP arrays ; WARNING: by columns !
+	double* Pi = REAL(Pi_);
+	double* Rho = REAL(Rho_);
+	double* X = REAL(X_);
+	double* Y = REAL(Y_);
+	int* rank = INTEGER(rank_);
+
+	/////////////
+	// OUTPUTS //
+	/////////////
+
+	SEXP phi, LLF, dimPhi;
+	PROTECT(dimPhi = allocVector(INTSXP, 3));
+	int* pDimPhi = INTEGER(dimPhi);
+	pDimPhi[0] = p; pDimPhi[1] = m; pDimPhi[2] = k;
+	PROTECT(phi = allocArray(REALSXP, dimPhi));
+	PROTECT(LLF = allocVector(REALSXP, 1));
+	double *pPhi=REAL(phi), *pLLF=REAL(LLF);
+
+	/////////////////////
+	// Call to EMGrank //
+	/////////////////////
+
+	EMGrank_core(Pi, Rho, mini, maxi, X, Y, tau, rank,
+		pPhi,pLLF,
+		n,p,m,k);
+
+	// Build list from OUT params and return it
+	SEXP listParams, listNames;
+	PROTECT(listParams = allocVector(VECSXP, 2));
+	char* lnames[2] = {"phi", "LLF"}; //lists labels
+	PROTECT(listNames = allocVector(STRSXP,2));
+	for (int i=0; i<2; i++)
+		SET_STRING_ELT(listNames,i,mkChar(lnames[i]));
+	setAttrib(listParams, R_NamesSymbol, listNames);
+	SET_VECTOR_ELT(listParams, 0, phi);
+	SET_VECTOR_ELT(listParams, 1, LLF);
+
+	UNPROTECT(5);
+	return listParams;
+}
diff --git a/pkg/src/sources/EMGLLF.c b/pkg/src/sources/EMGLLF.c
new file mode 100644
index 0000000..d2f5a8e
--- /dev/null
+++ b/pkg/src/sources/EMGLLF.c
@@ -0,0 +1,412 @@
+#include "utils.h"
+#include <stdlib.h>
+#include <math.h>
+#include <gsl/gsl_linalg.h>
+
+// TODO: don't recompute indexes ai(...) and mi(...) when possible
+void EMGLLF_core(
+	// IN parameters
+	const Real* phiInit, // parametre initial de moyenne renormalisé
+	const Real* rhoInit, // parametre initial de variance renormalisé
+	const Real* piInit,	 // parametre initial des proportions
+	const Real* gamInit, // paramètre initial des probabilités a posteriori de chaque échantillon
+	int mini, // nombre minimal d'itérations dans l'algorithme EM
+	int maxi, // nombre maximal d'itérations dans l'algorithme EM
+	Real gamma, // puissance des proportions dans la pénalisation pour un Lasso adaptatif
+	Real lambda, // valeur du paramètre de régularisation du Lasso
+	const Real* X, // régresseurs
+	const Real* Y, // réponse
+	Real tau, // seuil pour accepter la convergence
+	// OUT parameters (all pointers, to be modified)
+	Real* phi, // parametre de moyenne renormalisé, calculé par l'EM
+	Real* rho, // parametre de variance renormalisé, calculé par l'EM
+	Real* pi, // parametre des proportions renormalisé, calculé par l'EM
+	Real* llh, // (derniere) log vraisemblance associée à cet échantillon,
+	           // pour les valeurs estimées des paramètres
+	Real* S,
+	int* affec,
+	// additional size parameters
+	int n, // nombre d'echantillons
+	int p, // nombre de covariables
+	int m, // taille de Y (multivarié)
+	int k) // nombre de composantes dans le mélange
+{
+	//Initialize outputs
+	copyArray(phiInit, phi, p*m*k);
+	copyArray(rhoInit, rho, m*m*k);
+	copyArray(piInit, pi, k);
+	//S is already allocated, and doesn't need to be 'zeroed'
+
+	//Other local variables: same as in R
+	Real* gam = (Real*)malloc(n*k*sizeof(Real));
+	copyArray(gamInit, gam, n*k);
+	Real* Gram2 = (Real*)malloc(p*p*k*sizeof(Real));
+	Real* ps2 = (Real*)malloc(p*m*k*sizeof(Real));
+	Real* b = (Real*)malloc(k*sizeof(Real));
+	Real* X2 = (Real*)malloc(n*p*k*sizeof(Real));
+	Real* Y2 = (Real*)malloc(n*m*k*sizeof(Real));
+	*llh = -INFINITY;
+	Real* pi2 = (Real*)malloc(k*sizeof(Real));
+	const Real EPS = 1e-15;
+	// Additional (not at this place, in R file)
+	Real* gam2 = (Real*)malloc(k*sizeof(Real));
+	Real* sqNorm2 = (Real*)malloc(k*sizeof(Real));
+	Real* detRho = (Real*)malloc(k*sizeof(Real));
+	gsl_matrix* matrix = gsl_matrix_alloc(m, m);
+	gsl_permutation* permutation = gsl_permutation_alloc(m);
+	Real* YiRhoR = (Real*)malloc(m*sizeof(Real));
+	Real* XiPhiR = (Real*)malloc(m*sizeof(Real));
+	const Real gaussConstM = pow(2.*M_PI,m/2.);
+	Real* Phi = (Real*)malloc(p*m*k*sizeof(Real));
+	Real* Rho = (Real*)malloc(m*m*k*sizeof(Real));
+	Real* Pi = (Real*)malloc(k*sizeof(Real));
+
+	for (int ite=1; ite<=maxi; ite++)
+	{
+		copyArray(phi, Phi, p*m*k);
+		copyArray(rho, Rho, m*m*k);
+		copyArray(pi, Pi, k);
+
+		// Calculs associés a Y et X
+		for (int r=0; r<k; r++)
+		{
+			for (int mm=0; mm<m; mm++)
+			{
+				//Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm]
+				for (int u=0; u<n; u++)
+					Y2[ai(u,mm,r,n,m,k)] = sqrt(gam[mi(u,r,n,k)]) * Y[mi(u,mm,n,m)];
+			}
+			for (int i=0; i<n; i++)
+			{
+				//X2[i,,r] = sqrt(gam[i,r]) * X[i,]
+				for (int u=0; u<p; u++)
+					X2[ai(i,u,r,n,p,k)] = sqrt(gam[mi(i,r,n,k)]) * X[mi(i,u,n,p)];
+			}
+			for (int mm=0; mm<m; mm++)
+			{
+				//ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r])
+				for (int u=0; u<p; u++)
+				{
+					Real dotProduct = 0.;
+					for (int v=0; v<n; v++)
+						dotProduct += X2[ai(v,u,r,n,p,k)] * Y2[ai(v,mm,r,n,m,k)];
+					ps2[ai(u,mm,r,p,m,k)] = dotProduct;
+				}
+			}
+			for (int j=0; j<p; j++)
+			{
+				for (int s=0; s<p; s++)
+				{
+					//Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r])
+					Real dotProduct = 0.;
+					for (int u=0; u<n; u++)
+						dotProduct += X2[ai(u,j,r,n,p,k)] * X2[ai(u,s,r,n,p,k)];
+					Gram2[ai(j,s,r,p,p,k)] = dotProduct;
+				}
+			}
+		}
+
+		/////////////
+		// Etape M //
+		/////////////
+
+		// Pour pi
+		for (int r=0; r<k; r++)
+		{
+			//b[r] = sum(abs(phi[,,r]))
+			Real sumAbsPhi = 0.;
+			for (int u=0; u<p; u++)
+				for (int v=0; v<m; v++)
+					sumAbsPhi += fabs(phi[ai(u,v,r,p,m,k)]);
+			b[r] = sumAbsPhi;
+		}
+		//gam2 = colSums(gam)
+		for (int u=0; u<k; u++)
+		{
+			Real sumOnColumn = 0.;
+			for (int v=0; v<n; v++)
+				sumOnColumn += gam[mi(v,u,n,k)];
+			gam2[u] = sumOnColumn;
+		}
+		//a = sum(gam %*% log(pi))
+		Real a = 0.;
+		for (int u=0; u<n; u++)
+		{
+			Real dotProduct = 0.;
+			for (int v=0; v<k; v++)
+				dotProduct += gam[mi(u,v,n,k)] * log(pi[v]);
+			a += dotProduct;
+		}
+
+		//tant que les proportions sont negatives
+		int kk = 0,
+			pi2AllPositive = 0;
+		Real invN = 1./n;
+		while (!pi2AllPositive)
+		{
+			//pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi)
+			Real pow_01_kk = pow(0.1,kk);
+			for (int r=0; r<k; r++)
+				pi2[r] = pi[r] + pow_01_kk * (invN*gam2[r] - pi[r]);
+			//pi2AllPositive = all(pi2 >= 0)
+			pi2AllPositive = 1;
+			for (int r=0; r<k; r++)
+			{
+				if (pi2[r] < 0)
+				{
+					pi2AllPositive = 0;
+					break;
+				}
+			}
+			kk++;
+		}
+
+		//sum(pi^gamma * b)
+		Real piPowGammaDotB = 0.;
+		for (int v=0; v<k; v++)
+			piPowGammaDotB += pow(pi[v],gamma) * b[v];
+		//sum(pi2^gamma * b)
+		Real pi2PowGammaDotB = 0.;
+		for (int v=0; v<k; v++)
+			pi2PowGammaDotB += pow(pi2[v],gamma) * b[v];
+		//sum(gam2 * log(pi2))
+		Real gam2DotLogPi2 = 0.;
+		for (int v=0; v<k; v++)
+			gam2DotLogPi2 += gam2[v] * log(pi2[v]);
+
+		//t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante
+		while (-invN*a + lambda*piPowGammaDotB < -invN*gam2DotLogPi2 + lambda*pi2PowGammaDotB
+			&& kk<1000)
+		{
+			Real pow_01_kk = pow(0.1,kk);
+			//pi2 = pi + 0.1^kk * (1/n*gam2 - pi)
+			for (int v=0; v<k; v++)
+				pi2[v] = pi[v] + pow_01_kk * (invN*gam2[v] - pi[v]);
+			//pi2 was updated, so we recompute pi2PowGammaDotB and gam2DotLogPi2
+			pi2PowGammaDotB = 0.;
+			for (int v=0; v<k; v++)
+				pi2PowGammaDotB += pow(pi2[v],gamma) * b[v];
+			gam2DotLogPi2 = 0.;
+			for (int v=0; v<k; v++)
+				gam2DotLogPi2 += gam2[v] * log(pi2[v]);
+			kk++;
+		}
+		Real t = pow(0.1,kk);
+		//sum(pi + t*(pi2-pi))
+		Real sumPiPlusTbyDiff = 0.;
+		for (int v=0; v<k; v++)
+			sumPiPlusTbyDiff += (pi[v] + t*(pi2[v] - pi[v]));
+		//pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi))
+		for (int v=0; v<k; v++)
+			pi[v] = (pi[v] + t*(pi2[v] - pi[v])) / sumPiPlusTbyDiff;
+
+		//Pour phi et rho
+		for (int r=0; r<k; r++)
+		{
+			for (int mm=0; mm<m; mm++)
+			{
+				Real ps = 0.,
+					nY2 = 0.;
+				// Compute ps, and nY2 = sum(Y2[,mm,r]^2)
+				for (int i=0; i<n; i++)
+				{
+					//< X2[i,,r] , phi[,mm,r] >
+					Real dotProduct = 0.;
+					for (int u=0; u<p; u++)
+						dotProduct += X2[ai(i,u,r,n,p,k)] * phi[ai(u,mm,r,p,m,k)];
+					//ps = ps + Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r])
+					ps += Y2[ai(i,mm,r,n,m,k)] * dotProduct;
+					nY2 += Y2[ai(i,mm,r,n,m,k)] * Y2[ai(i,mm,r,n,m,k)];
+				}
+				//rho[mm,mm,r] = (ps+sqrt(ps^2+4*nY2*gam2[r])) / (2*nY2)
+				rho[ai(mm,mm,r,m,m,k)] = (ps + sqrt(ps*ps + 4*nY2 * gam2[r])) / (2*nY2);
+			}
+		}
+
+		for (int r=0; r<k; r++)
+		{
+			for (int j=0; j<p; j++)
+			{
+				for (int mm=0; mm<m; mm++)
+				{
+					//sum(phi[-j,mm,r] * Gram2[j,-j,r])
+					Real phiDotGram2 = 0.;
+					for (int u=0; u<p; u++)
+					{
+						if (u != j)
+							phiDotGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)];
+					}
+					//S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r])
+					S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)]
+						+ phiDotGram2;
+					Real pirPowGamma = pow(pi[r],gamma);
+					if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pirPowGamma)
+						phi[ai(j,mm,r,p,m,k)] = 0.;
+					else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pirPowGamma)
+					{
+						phi[ai(j,mm,r,p,m,k)] = (n*lambda*pirPowGamma - S[ai(j,mm,r,p,m,k)])
+							/ Gram2[ai(j,j,r,p,p,k)];
+					}
+					else
+					{
+						phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pirPowGamma + S[ai(j,mm,r,p,m,k)])
+							/ Gram2[ai(j,j,r,p,p,k)];
+					}
+				}
+			}
+		}
+
+		/////////////
+		// Etape E //
+		/////////////
+
+		// Precompute det(rho[,,r]) for r in 1...k
+		int signum;
+		for (int r=0; r<k; r++)
+		{
+			for (int u=0; u<m; u++)
+			{
+				for (int v=0; v<m; v++)
+					matrix->data[u*m+v] = rho[ai(u,v,r,m,m,k)];
+			}
+			gsl_linalg_LU_decomp(matrix, permutation, &signum);
+			detRho[r] = gsl_linalg_LU_det(matrix, signum);
+		}
+
+		Real sumLogLLH = 0.;
+		for (int i=0; i<n; i++)
+		{
+			for (int r=0; r<k; r++)
+			{
+				//compute Y[i,]%*%rho[,,r]
+				for (int u=0; u<m; u++)
+				{
+					YiRhoR[u] = 0.;
+					for (int v=0; v<m; v++)
+						YiRhoR[u] += Y[mi(i,v,n,m)] * rho[ai(v,u,r,m,m,k)];
+				}
+
+				//compute X[i,]%*%phi[,,r]
+				for (int u=0; u<m; u++)
+				{
+					XiPhiR[u] = 0.;
+					for (int v=0; v<p; v++)
+						XiPhiR[u] += X[mi(i,v,n,p)] * phi[ai(v,u,r,p,m,k)];
+				}
+
+				//compute sq norm || Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) ||_2^2
+				sqNorm2[r] = 0.;
+				for (int u=0; u<m; u++)
+					sqNorm2[r] += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]);
+			}
+
+			Real sumGamI = 0.;
+			for (int r=0; r<k; r++)
+			{
+				gam[mi(i,r,n,k)] = pi[r] * exp(-.5*sqNorm2[r]) * detRho[r];
+				sumGamI += gam[mi(i,r,n,k)];
+			}
+
+			sumLogLLH += log(sumGamI) - log(gaussConstM);
+			if (sumGamI > EPS) //else: gam[i,] is already ~=0
+			{
+				for (int r=0; r<k; r++)
+					gam[mi(i,r,n,k)] /= sumGamI;
+			}
+		}
+
+		//sumPen = sum(pi^gamma * b)
+		Real sumPen = 0.;
+		for (int r=0; r<k; r++)
+			sumPen += pow(pi[r],gamma) * b[r];
+		Real last_llh = *llh;
+		//llh = -sumLogLLH/n + lambda*sumPen
+		*llh = -invN * sumLogLLH + lambda * sumPen;
+		Real dist = ite==1 ? *llh : (*llh - last_llh) / (1. + fabs(*llh));
+
+		//Dist1 = max( abs(phi-Phi) / (1+abs(phi)) )
+		Real Dist1 = 0.;
+		for (int u=0; u<p; u++)
+		{
+			for (int v=0; v<m; v++)
+			{
+				for (int w=0; w<k; w++)
+				{
+					Real tmpDist = fabs(phi[ai(u,v,w,p,m,k)]-Phi[ai(u,v,w,p,m,k)])
+						/ (1.+fabs(phi[ai(u,v,w,p,m,k)]));
+					if (tmpDist > Dist1)
+						Dist1 = tmpDist;
+				}
+			}
+		}
+		//Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) )
+		Real Dist2 = 0.;
+		for (int u=0; u<m; u++)
+		{
+			for (int v=0; v<m; v++)
+			{
+				for (int w=0; w<k; w++)
+				{
+					Real tmpDist = fabs(rho[ai(u,v,w,m,m,k)]-Rho[ai(u,v,w,m,m,k)])
+						/ (1.+fabs(rho[ai(u,v,w,m,m,k)]));
+					if (tmpDist > Dist2)
+						Dist2 = tmpDist;
+				}
+			}
+		}
+		//Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)))
+		Real Dist3 = 0.;
+		for (int u=0; u<n; u++)
+		{
+			for (int v=0; v<k; v++)
+			{
+				Real tmpDist = fabs(pi[v]-Pi[v]) / (1.+fabs(pi[v]));
+				if (tmpDist > Dist3)
+					Dist3 = tmpDist;
+			}
+		}
+		//dist2=max([max(Dist1),max(Dist2),max(Dist3)]);
+		Real dist2 = Dist1;
+		if (Dist2 > dist2)
+			dist2 = Dist2;
+		if (Dist3 > dist2)
+			dist2 = Dist3;
+
+		if (ite >= mini && (dist >= tau || dist2 >= sqrt(tau)))
+			break;
+	}
+
+	//affec = apply(gam, 1, which.max)
+	for (int i=0; i<n; i++)
+	{
+		Real rowMax = 0.;
+		affec[i] = 0;
+		for (int j=0; j<k; j++)
+		{
+			if (gam[mi(i,j,n,k)] > rowMax)
+			{
+				affec[i] = j+1; //R indices start at 1
+				rowMax = gam[mi(i,j,n,k)];
+			}
+		}
+	}
+
+	//free memory
+	free(b);
+	free(gam);
+	free(Phi);
+	free(Rho);
+	free(Pi);
+	free(Gram2);
+	free(ps2);
+	free(detRho);
+	gsl_matrix_free(matrix);
+	gsl_permutation_free(permutation);
+	free(XiPhiR);
+	free(YiRhoR);
+	free(gam2);
+	free(pi2);
+	free(X2);
+	free(Y2);
+	free(sqNorm2);
+}
diff --git a/pkg/src/sources/EMGLLF.h b/pkg/src/sources/EMGLLF.h
new file mode 100644
index 0000000..e15cb87
--- /dev/null
+++ b/pkg/src/sources/EMGLLF.h
@@ -0,0 +1,32 @@
+#ifndef valse_EMGLLF_H
+#define valse_EMGLLF_H
+
+#include "utils.h"
+
+void EMGLLF_core(
+	// IN parameters
+	const Real* phiInit,
+	const Real* rhoInit,
+	const Real* piInit,
+	const Real* gamInit,
+	int mini,
+	int maxi,
+	Real gamma,
+	Real lambda,
+	const Real* X,
+	const Real* Y,
+	Real tau,
+	// OUT parameters
+	Real* phi,
+	Real* rho,
+	Real* pi,
+	Real* LLF,
+	Real* S,
+	int* affec,
+	// additional size parameters
+	int n,
+	int p,
+	int m,
+	int k);
+
+#endif
diff --git a/pkg/src/sources/EMGrank.c b/pkg/src/sources/EMGrank.c
new file mode 100644
index 0000000..3a9bf94
--- /dev/null
+++ b/pkg/src/sources/EMGrank.c
@@ -0,0 +1,307 @@
+#include <stdlib.h>
+#include <gsl/gsl_linalg.h>
+#include "utils.h"
+
+// Compute pseudo-inverse of a square matrix
+static Real* pinv(const Real* matrix, int dim)
+{
+	gsl_matrix* U = gsl_matrix_alloc(dim,dim);
+	gsl_matrix* V = gsl_matrix_alloc(dim,dim);
+	gsl_vector* S = gsl_vector_alloc(dim);
+	gsl_vector* work = gsl_vector_alloc(dim);
+	Real EPS = 1e-10; //threshold for singular value "== 0"
+	
+	//copy matrix into U
+	copyArray(matrix, U->data, dim*dim);
+
+	//U,S,V = SVD of matrix
+	gsl_linalg_SV_decomp(U, V, S, work);
+	gsl_vector_free(work);
+
+	// Obtain pseudo-inverse by V*S^{-1}*t(U)
+	Real* inverse = (Real*)malloc(dim*dim*sizeof(Real));
+	for (int i=0; i<dim; i++)
+	{
+		for (int ii=0; ii<dim; ii++)
+		{
+			Real dotProduct = 0.0;
+			for (int j=0; j<dim; j++)
+				dotProduct += V->data[i*dim+j] * (S->data[j] > EPS ? 1.0/S->data[j] : 0.0) * U->data[ii*dim+j];
+			inverse[i*dim+ii] = dotProduct;
+		}
+	}
+	
+	gsl_matrix_free(U);
+	gsl_matrix_free(V);
+	gsl_vector_free(S);
+	return inverse;
+}
+
+// TODO: comment EMGrank purpose
+void EMGrank_core(
+	// IN parameters
+	const Real* Pi, // parametre de proportion
+	const Real* Rho, // parametre initial de variance renormalisé
+	int mini, // nombre minimal d'itérations dans l'algorithme EM
+	int maxi, // nombre maximal d'itérations dans l'algorithme EM
+	const Real* X, // régresseurs
+	const Real* Y, // réponse
+	Real tau, // seuil pour accepter la convergence
+	const int* rank, // vecteur des rangs possibles
+	// OUT parameters
+	Real* phi, // parametre de moyenne renormalisé, calculé par l'EM
+	Real* LLF, // log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres
+	// additional size parameters
+	int n, // taille de l'echantillon
+	int p, // nombre de covariables
+	int m, // taille de Y (multivarié)
+	int k) // nombre de composantes
+{
+	// Allocations, initializations
+	Real* Phi = (Real*)calloc(p*m*k,sizeof(Real));
+	Real* hatBetaR = (Real*)malloc(p*m*sizeof(Real));
+	int signum;
+	Real invN = 1.0/n;
+	int deltaPhiBufferSize = 20;
+	Real* deltaPhi = (Real*)malloc(deltaPhiBufferSize*sizeof(Real));
+	int ite = 0;
+	Real sumDeltaPhi = 0.0;
+	Real* YiRhoR = (Real*)malloc(m*sizeof(Real));
+	Real* XiPhiR = (Real*)malloc(m*sizeof(Real));
+	Real* Xr = (Real*)malloc(n*p*sizeof(Real));
+	Real* Yr = (Real*)malloc(n*m*sizeof(Real));
+	Real* tXrXr = (Real*)malloc(p*p*sizeof(Real));
+	Real* tXrYr = (Real*)malloc(p*m*sizeof(Real));
+	gsl_matrix* matrixM = gsl_matrix_alloc(p, m);
+	gsl_matrix* matrixE = gsl_matrix_alloc(m, m);
+	gsl_permutation* permutation = gsl_permutation_alloc(m);
+	gsl_matrix* V = gsl_matrix_alloc(m,m);
+	gsl_vector* S = gsl_vector_alloc(m);
+	gsl_vector* work = gsl_vector_alloc(m);
+
+	//Initialize class memberships (all elements in class 0; TODO: randomize ?)
+	int* Z = (int*)calloc(n, sizeof(int));
+
+	//Initialize phi to zero, because some M loops might exit before phi affectation
+	zeroArray(phi, p*m*k);
+
+	while (ite<mini || (ite<maxi && sumDeltaPhi>tau))
+	{
+		/////////////
+		// Etape M //
+		/////////////
+		
+		//M step: Mise à jour de Beta (et donc phi)
+		for (int r=0; r<k; r++)
+		{
+			//Compute Xr = X(Z==r,:) and Yr = Y(Z==r,:)
+			int cardClustR=0;
+			for (int i=0; i<n; i++)
+			{
+				if (Z[i] == r)
+				{
+					for (int j=0; j<p; j++)
+						Xr[mi(cardClustR,j,n,p)] = X[mi(i,j,n,p)];
+					for (int j=0; j<m; j++)
+						Yr[mi(cardClustR,j,n,m)] = Y[mi(i,j,n,m)];
+					cardClustR++;
+				}
+			}
+			if (cardClustR == 0)
+				continue;
+
+			//Compute tXrXr = t(Xr) * Xr
+			for (int j=0; j<p; j++)
+			{
+				for (int jj=0; jj<p; jj++)
+				{
+					Real dotProduct = 0.0;
+					for (int u=0; u<cardClustR; u++)
+						dotProduct += Xr[mi(u,j,n,p)] * Xr[mi(u,jj,n,p)];
+					tXrXr[mi(j,jj,p,p)] = dotProduct;
+				}
+			}
+
+			//Get pseudo inverse = (t(Xr)*Xr)^{-1}
+			Real* invTXrXr = pinv(tXrXr, p);
+			
+			// Compute tXrYr = t(Xr) * Yr
+			for (int j=0; j<p; j++)
+			{
+				for (int jj=0; jj<m; jj++)
+				{
+					Real dotProduct = 0.0;
+					for (int u=0; u<cardClustR; u++)
+						dotProduct += Xr[mi(u,j,n,p)] * Yr[mi(u,jj,n,m)];
+					tXrYr[mi(j,jj,p,m)] = dotProduct;
+				}
+			}
+
+			//Fill matrixM with inverse * tXrYr = (t(Xr)*Xr)^{-1} * t(Xr) * Yr
+			for (int j=0; j<p; j++)
+			{
+				for (int jj=0; jj<m; jj++)
+				{
+					Real dotProduct = 0.0;
+					for (int u=0; u<p; u++)
+						dotProduct += invTXrXr[mi(j,u,p,p)] * tXrYr[mi(u,jj,p,m)];
+					matrixM->data[j*m+jj] = dotProduct;
+				}
+			}
+			free(invTXrXr);
+
+			//U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr
+			gsl_linalg_SV_decomp(matrixM, V, S, work);
+
+			//Set m-rank(r) singular values to zero, and recompose
+			//best rank(r) approximation of the initial product
+			for (int j=rank[r]; j<m; j++)
+				S->data[j] = 0.0;
+			
+			//[intermediate step] Compute hatBetaR = U * S * t(V)
+			double* U = matrixM->data; //GSL require double precision
+			for (int j=0; j<p; j++)
+			{
+				for (int jj=0; jj<m; jj++)
+				{
+					Real dotProduct = 0.0;
+					for (int u=0; u<m; u++)
+						dotProduct += U[j*m+u] * S->data[u] * V->data[jj*m+u];
+					hatBetaR[mi(j,jj,p,m)] = dotProduct;
+				}
+			}
+
+			//Compute phi(:,:,r) = hatBetaR * Rho(:,:,r)
+			for (int j=0; j<p; j++)
+			{
+				for (int jj=0; jj<m; jj++)
+				{
+					Real dotProduct=0.0;
+					for (int u=0; u<m; u++)
+						dotProduct += hatBetaR[mi(j,u,p,m)] * Rho[ai(u,jj,r,m,m,k)];
+					phi[ai(j,jj,r,p,m,k)] = dotProduct;
+				}
+		}
+		}
+
+		/////////////
+		// Etape E //
+		/////////////
+		
+		Real sumLogLLF2 = 0.0;
+		for (int i=0; i<n; i++)
+		{
+			Real sumLLF1 = 0.0;
+			Real maxLogGamIR = -INFINITY;
+			for (int r=0; r<k; r++)
+			{
+				//Compute
+				//Gam(i,r) = Pi(r) * det(Rho(:,:,r)) * exp( -1/2 * (Y(i,:)*Rho(:,:,r) - X(i,:)...
+				//*phi(:,:,r)) * transpose( Y(i,:)*Rho(:,:,r) - X(i,:)*phi(:,:,r) ) );
+				//split in several sub-steps
+				
+				//compute det(Rho(:,:,r)) [TODO: avoid re-computations]
+				for (int j=0; j<m; j++)
+				{
+					for (int jj=0; jj<m; jj++)
+						matrixE->data[j*m+jj] = Rho[ai(j,jj,r,m,m,k)];
+				}
+				gsl_linalg_LU_decomp(matrixE, permutation, &signum);
+				Real detRhoR = gsl_linalg_LU_det(matrixE, signum);
+
+				//compute Y(i,:)*Rho(:,:,r)
+				for (int j=0; j<m; j++)
+				{
+					YiRhoR[j] = 0.0;
+					for (int u=0; u<m; u++)
+						YiRhoR[j] += Y[mi(i,u,n,m)] * Rho[ai(u,j,r,m,m,k)];
+				}
+
+				//compute X(i,:)*phi(:,:,r)
+				for (int j=0; j<m; j++)
+				{
+					XiPhiR[j] = 0.0;
+					for (int u=0; u<p; u++)
+						XiPhiR[j] += X[mi(i,u,n,p)] * phi[ai(u,j,r,p,m,k)];
+				}
+
+				//compute dotProduct < Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) . Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) >
+				Real dotProduct = 0.0;
+				for (int u=0; u<m; u++)
+					dotProduct += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]);
+				Real logGamIR = log(Pi[r]) + log(detRhoR) - 0.5*dotProduct;
+
+				//Z(i) = index of max (gam(i,:))
+				if (logGamIR > maxLogGamIR)
+				{
+					Z[i] = r;
+					maxLogGamIR = logGamIR;
+				}
+				sumLLF1 += exp(logGamIR) / pow(2*M_PI,m/2.0);
+			}
+
+			sumLogLLF2 += log(sumLLF1);
+		}
+
+		// Assign output variable LLF
+		*LLF = -invN * sumLogLLF2;
+
+		//newDeltaPhi = max(max((abs(phi-Phi))./(1+abs(phi))));
+		Real newDeltaPhi = 0.0;
+		for (int j=0; j<p; j++)
+		{
+			for (int jj=0; jj<m; jj++)
+			{
+				for (int r=0; r<k; r++)
+				{
+					Real tmpDist = fabs(phi[ai(j,jj,r,p,m,k)]-Phi[ai(j,jj,r,p,m,k)])
+						/ (1.0+fabs(phi[ai(j,jj,r,p,m,k)]));
+					if (tmpDist > newDeltaPhi)
+						newDeltaPhi = tmpDist;
+				}
+			}
+		}
+
+		//update distance parameter to check algorithm convergence (delta(phi, Phi))
+		//TODO: deltaPhi should be a linked list for perf.
+		if (ite < deltaPhiBufferSize)
+			deltaPhi[ite] = newDeltaPhi;
+		else
+		{
+			sumDeltaPhi -= deltaPhi[0];
+			for (int u=0; u<deltaPhiBufferSize-1; u++)
+				deltaPhi[u] = deltaPhi[u+1];
+			deltaPhi[deltaPhiBufferSize-1] = newDeltaPhi;
+		}
+		sumDeltaPhi += newDeltaPhi;
+
+		// update other local variables
+		for (int j=0; j<m; j++)
+		{
+			for (int jj=0; jj<p; jj++)
+			{
+				for (int r=0; r<k; r++)
+					Phi[ai(jj,j,r,p,m,k)] = phi[ai(jj,j,r,p,m,k)];
+			}
+		}
+		ite++;
+	}
+
+	//free memory
+	free(hatBetaR);
+	free(deltaPhi);
+	free(Phi);
+	gsl_matrix_free(matrixE);
+	gsl_matrix_free(matrixM);
+	gsl_permutation_free(permutation);
+	gsl_vector_free(work);
+	gsl_matrix_free(V);
+	gsl_vector_free(S);
+	free(XiPhiR);
+	free(YiRhoR);
+	free(Xr);
+	free(Yr);
+	free(tXrXr);
+	free(tXrYr);
+	free(Z);
+}
diff --git a/pkg/src/sources/EMGrank.h b/pkg/src/sources/EMGrank.h
new file mode 100644
index 0000000..b7367d8
--- /dev/null
+++ b/pkg/src/sources/EMGrank.h
@@ -0,0 +1,25 @@
+#ifndef valse_EMGrank_H
+#define valse_EMGrank_H
+
+#include "utils.h"
+
+void EMGrank_core(
+	// IN parameters
+	const Real* Pi,
+	const Real* Rho,
+	int mini,
+	int maxi,
+	const Real* X,
+	const Real* Y,
+	Real tau,
+	const int* rank,
+	// OUT parameters
+	Real* phi,
+	Real* LLF,
+	// additional size parameters
+	int n,
+	int p,
+	int m,
+	int k);
+
+#endif
diff --git a/pkg/src/sources/utils.h b/pkg/src/sources/utils.h
new file mode 100644
index 0000000..be3a72f
--- /dev/null
+++ b/pkg/src/sources/utils.h
@@ -0,0 +1,48 @@
+#ifndef valse_utils_H
+#define valse_utils_H
+
+//#include <stdint.h>
+
+/********
+ * Types
+ *******/
+
+typedef double Real;
+//typedef uint32_t UInt;
+//typedef int32_t Int;
+
+/*******************************
+ * Matrix and arrays indexation
+ *******************************/
+
+// Matrix Index ; TODO? ncol unused
+#define mi(i,j,nrow,ncol)\
+	j*nrow + i
+
+// Array Index ; TODO? d3 unused
+#define ai(i,j,k,d1,d2,d3)\
+	k*d1*d2 + j*d1 + i
+
+// Array4 Index ; TODO? ...
+#define ai4(i,j,k,m,d1,d2,d3,d4)\
+	m*d1*d2*d3 + k*d1*d2 + j*d1 + i
+
+/*************************
+ * Array copy & "zeroing"
+ ************************/
+
+// Fill an array with zeros
+#define zeroArray(array, size)\
+{\
+	for (int u=0; u<size; u++)\
+		array[u] = 0;\
+}
+
+// Copy an 1D array
+#define copyArray(array, copy, size)\
+{\
+	for (int u=0; u<size; u++)\
+		copy[u] = array[u];\
+}
+
+#endif
diff --git a/pkg/tests/testthat.R b/pkg/tests/testthat.R
new file mode 100644
index 0000000..88e5631
--- /dev/null
+++ b/pkg/tests/testthat.R
@@ -0,0 +1,4 @@
+library(testthat)
+library(valse) #ou load_all()
+
+test_check("valse")
diff --git a/pkg/tests/testthat/helper-context1.R b/pkg/tests/testthat/helper-context1.R
new file mode 100644
index 0000000..b40f358
--- /dev/null
+++ b/pkg/tests/testthat/helper-context1.R
@@ -0,0 +1,5 @@
+# Potential helpers for context 1
+help <- function()
+{
+	#...
+}
diff --git a/pkg/tests/testthat/test-context1.R b/pkg/tests/testthat/test-context1.R
new file mode 100644
index 0000000..17c633f
--- /dev/null
+++ b/pkg/tests/testthat/test-context1.R
@@ -0,0 +1,11 @@
+context("Context1")
+
+test_that("function 1...",
+{
+	#expect_lte( ..., ...)
+})
+
+test_that("function 2...",
+{
+	#expect_equal(..., ...)
+})
diff --git a/pkg/vignettes/.gitignore b/pkg/vignettes/.gitignore
new file mode 100644
index 0000000..e6493d4
--- /dev/null
+++ b/pkg/vignettes/.gitignore
@@ -0,0 +1,14 @@
+#ignore jupyter generated file (ipynb, HTML)
+*.html
+*.ipynb
+
+#and various (pdf)LaTeX files, in case of
+*.tex
+*.pdf
+*.aux
+*.dvi
+*.log
+*.out
+*.toc
+*.synctex.gz
+/figure/
-- 
2.44.0