From: Benjamin Auder Date: Fri, 10 Jan 2025 01:08:01 +0000 (+0100) Subject: Fix vignette X-Git-Url: https://git.auder.net/%7B%7B%20asset%28%27mixstore/images/pieces/assets/doc/DESCRIPTION?a=commitdiff_plain;h=72b269e90df3fa7760cc6634393d2e16a9111d72;p=morpheus.git Fix vignette --- diff --git a/.gitignore b/.gitignore index e6a7351..eb90000 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,5 @@ +/_unversioned/ + #ignore roxygen2 generated files *.Rd !*-package.Rd @@ -13,9 +15,10 @@ /reports/* !/reports/*.R !/reports/*.sh +/vignettes/cache/ +/vignettes/figure/ /vignettes/report.html -/vignettes/report_cache/ -/vignettes/report_files/ +/vignettes/report.md /vignettes/*.zip #ignore R session files diff --git a/pkg/DESCRIPTION b/pkg/DESCRIPTION index 706925c..d3b5427 100644 --- a/pkg/DESCRIPTION +++ b/pkg/DESCRIPTION @@ -1,3 +1,4 @@ +Encoding: UTF-8 Package: morpheus Title: Estimate Parameters of Mixtures of Logistic Regressions Description: Mixture of logistic regressions parameters (H)estimation with @@ -24,7 +25,7 @@ Suggests: testthat (>= 3.0.0), roxygen2 License: MIT + file LICENSE -RoxygenNote: 7.1.1 +RoxygenNote: 7.3.2 URL: https://github.com/yagu0/morpheus Collate: 'utils.R' diff --git a/pkg/R/plot.R b/pkg/R/plot.R index 328b18c..93e9e65 100644 --- a/pkg/R/plot.R +++ b/pkg/R/plot.R @@ -88,8 +88,7 @@ plotBox <- function(mr, x, y, ...) args <- list(...) for (i in 1:L) { - boxplot(params[[i]], - ifelse("ylab" %in% names(args), args$ylab, "Parameter value")) + boxplot(params[[i]], ...) } } diff --git a/vignettes/report.Rmd b/vignettes/report.Rmd index de98b9f..41a0a09 100644 --- a/vignettes/report.Rmd +++ b/vignettes/report.Rmd @@ -44,12 +44,12 @@ $Y=1$ conditionally to $X=x$ is given by $g(\langle \beta, x \rangle +b)$, where $\beta\in \R^{d}$ is the vector of regression coefficients and $b\in\R$ is the intercept. Popular examples of link functions are the logit link function where for any real $z$, $g(z)=e^z/(1+e^z)$ and the probit link function where $g(z)=\Phi(z),$ with $\Phi$ -the cumulative distribution function of the standard normal ${\cal N}(0,1)$. +the cumulative distribution function of the standard normal ${\mathcal N}(0,1)$. Both are implemented in the package. If now we want to modelise heterogeneous populations, let $K$ be the number of populations and $\omega=(\omega_1,\cdots,\omega_K)$ their weights such that -$\omega_{j}\geq 0$, $j=1,\ldots,K$ and $\sum_{j=1}^{K}\omega{j}=1$. +$\omega_{j}\geq 0$, $j=1,\ldots,K$ and $\sum_{j=1}^{K}\omega_{j}=1$. Define, for $j=1,\ldots,K$, the regression coefficients in the $j$-th population by $\beta_{j}\in\R^{d}$ and the intercept in the $j$-th population by $b_{j}\in\R$. Let $\omega =(\omega_{1},\ldots,\omega_{K})$, @@ -78,10 +78,12 @@ where $X\sim \mathcal{N}(m,\Sigma)$, $m\in \R^{d}$, $\Sigma$ a positive and symetric $d\times d$ matrix. ***** TODO: take this into account? --> The two main functions are: + * computeMu(), which estimates the parameters directions, and * optimParams(), which builds an object \code{o} to estimate all other parameters when calling \code{o$run()}, starting from the directions obtained by the previous function. + A third function is useful to run Monte-Carlo or bootstrap estimations using different models in various contexts: multiRun(). We'll show example for all of them. @@ -127,9 +129,8 @@ The other parameters are estimated by solving an optimization problem. The following function builds and return an optimization algorithm object: ```{r, results="show", include=TRUE, echo=TRUE} -M <- computeMoments(io$X, io$Y) -# X and Y must be provided if the moments matrix is not given -algopt <- optimParams(K=2, link="probit", optargs=list(M=M)) +# M <- computeMoments(io$X, io$Y) #optional (if several runs) +algopt <- optimParams(io$X, io$Y, K=2, link="probit") #, M=M) # Optimization starts at beta = mu, b = 0 and p = uniform distribution x0 <- list(beta = mu) theta <- algopt$run(x0) @@ -194,7 +195,7 @@ see ?plotHist). ```{r, results="show", include=TRUE, echo=TRUE} # Second row, first column; morpheus on the left, flexmix on the right -plotBox(mr1, 2, 1, "Target value: -1") +plotBox(mr1, 2, 1, main="Target value: -1") ``` ```{r, results="show", include=TRUE, echo=TRUE} @@ -204,7 +205,7 @@ mr2 <- multiRun(list(n=1000,p=1/2,beta=beta,b=c(0,0),optargs=list(link="logit")) function(fargs) { library(morpheus) mu <- computeMu(fargs$X, fargs$Y, fargs$optargs) - optimParams(fargs$K,fargs$link,fargs$optargs)$run(list(beta=mu))$beta + optimParams(fargs$X,fargs$Y,fargs$K,fargs$link,fargs$M)$run(list(beta=mu))$beta }, # flexmix function(fargs) { @@ -222,7 +223,7 @@ mr2 <- multiRun(list(n=1000,p=1/2,beta=beta,b=c(0,0),optargs=list(link="logit")) fargs$Y = io$Y fargs$K = ncol(fargs$beta) fargs$link = fargs$optargs$link - fargs$optargs$M = computeMoments(io$X,io$Y) + fargs$M = computeMoments(io$X,io$Y) fargs }, N=10, ncores=3) # As in example 1, align results: @@ -232,6 +233,7 @@ for (i in 1:2) ```{r, results="show", include=TRUE, echo=TRUE} # Second argument = true parameters matrix; third arg = index of method (here "morpheus") -plotCoefs(mr2, beta, 1) +plotCoefs(mr2[[1]], beta, 1) +plotCoefs(mr2[[2]], beta, 1) # Real params are on the continous line; estimations = dotted line ```