From: emilie Date: Tue, 4 Apr 2017 16:02:05 +0000 (+0200) Subject: fix some errors X-Git-Url: https://git.auder.net/%7B%7B%20asset%28%27mixstore/images/assets/doc/img/%3C?a=commitdiff_plain;h=086cf723817b690dc368d2f11b7b9e88d183e804;p=valse.git fix some errors --- diff --git a/pkg/DESCRIPTION b/pkg/DESCRIPTION index eb71b76..b13ee14 100644 --- a/pkg/DESCRIPTION +++ b/pkg/DESCRIPTION @@ -38,5 +38,7 @@ Collate: 'initSmallEM.R' 'EMGrank.R' 'EMGLLF.R' + 'EMGrank_R.R' + 'EMGLLF_R.R' 'generateXY.R' 'A_NAMESPACE.R' diff --git a/pkg/R/constructionModelesLassoMLE.R b/pkg/R/constructionModelesLassoMLE.R index 67fc1fc..a49529c 100644 --- a/pkg/R/constructionModelesLassoMLE.R +++ b/pkg/R/constructionModelesLassoMLE.R @@ -8,79 +8,82 @@ #' #' export constructionModelesLassoMLE = function(phiInit, rhoInit, piInit, gamInit, mini, maxi, - gamma, X, Y, seuil, tau, selected, ncores=3, verbose=FALSE) + gamma, X, Y, thresh, tau, S, ncores=3, artefact = 1e3, verbose=FALSE) { if (ncores > 1) - { + { cl = parallel::makeCluster(ncores) parallel::clusterExport( cl, envir=environment(), - varlist=c("phiInit","rhoInit","gamInit","mini","maxi","gamma","X","Y","seuil", - "tau","selected","ncores","verbose") ) - } - - # Individual model computation - computeAtLambda <- function(lambda) - { - if (ncores > 1) - require("valse") #// nodes start with an ampty environment - + varlist=c("phiInit","rhoInit","gamInit","mini","maxi","gamma","X","Y","thresh", + "tau","S","ncores","verbose") ) + } + + # Individual model computation + computeAtLambda <- function(lambda) + { + if (ncores > 1) + require("valse") #// nodes start with an empty environment + if (verbose) - print(paste("Computations for lambda=",lambda)) - - n = dim(X)[1] - p = dim(phiInit)[1] - m = dim(phiInit)[2] - k = dim(phiInit)[3] - - sel.lambda = selected[[lambda]] -# col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix - col.sel <- which( sapply(sel.lambda,length) > 0 ) #if list of selected vars - - if (length(col.sel) == 0) - return (NULL) - - # lambda == 0 because we compute the EMV: no penalization here - res = EMGLLF(phiInit[col.sel,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0, - X[,col.sel],Y,tau) - - # Eval dimension from the result + selected - phiLambda2 = res_EM$phi - rhoLambda = res_EM$rho - piLambda = res_EM$pi - phiLambda = array(0, dim = c(p,m,k)) - for (j in seq_along(col.sel)) - phiLambda[col.sel[j],,] = phiLambda2[j,,] - - dimension = 0 - for (j in 1:p) - { - b = setdiff(1:m, sel.lambda[,j]) - if (length(b) > 0) - phiLambda[j,b,] = 0.0 - dimension = dimension + sum(sel.lambda[,j]!=0) - } - - # on veut calculer la vraisemblance avec toutes nos estimations - densite = vector("double",n) - for (r in 1:k) - { - delta = Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r]) - densite = densite + piLambda[r] * - det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-tcrossprod(delta)/2.0) - } - llhLambda = c( sum(log(densite)), (dimension+m+1)*k-1 ) - list("phi"= phiLambda, "rho"= rhoLambda, "pi"= piLambda, "llh" = llhLambda) - } - - #Pour chaque lambda de la grille, on calcule les coefficients + print(paste("Computations for lambda=",lambda)) + + n = dim(X)[1] + p = dim(phiInit)[1] + m = dim(phiInit)[2] + k = dim(phiInit)[3] + + sel.lambda = S[[lambda]]$selected + # col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix + col.sel <- which( sapply(sel.lambda,length) > 0 ) #if list of selected vars + + if (length(col.sel) == 0) + {return (NULL)} else { + + # lambda == 0 because we compute the EMV: no penalization here + res_EM = EMGLLF(phiInit[col.sel,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0, + X[,col.sel],Y,tau) + + # Eval dimension from the result + selected + phiLambda2 = res_EM$phi + rhoLambda = res_EM$rho + piLambda = res_EM$pi + phiLambda = array(0, dim = c(p,m,k)) + for (j in seq_along(col.sel)) + phiLambda[col.sel[j],,] = phiLambda2[j,,] + + dimension = 0 + for (j in 1:p) + { + b = setdiff(1:m, sel.lambda[[j]])## je confonds un peu ligne et colonne : est-ce dans le bon sens ? + ## moi pour la dimension, j'aurai juste mis length(unlist(sel.lambda)) mais je sais pas si c'est rapide + if (length(b) > 0) + phiLambda[j,b,] = 0.0 + dimension = dimension + sum(sel.lambda[[j]]!=0) + } + + # Computation of the loglikelihood + densite = vector("double",n) + for (r in 1:k) + { + delta = (Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r]))/artefact + print(max(delta)) + densite = densite + piLambda[r] * + det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-tcrossprod(delta)/2.0) + } + llhLambda = c( sum(artefact^2 * log(densite)), (dimension+m+1)*k-1 ) + list("phi"= phiLambda, "rho"= rhoLambda, "pi"= piLambda, "llh" = llhLambda) + } + } + + # For each lambda, computation of the parameters out = - if (ncores > 1) - parLapply(cl, glambda, computeAtLambda) - else - lapply(glambda, computeAtLambda) - - if (ncores > 1) + if (ncores > 1) + parLapply(cl, 1:length(S), computeAtLambda) + else + lapply(1:length(S), computeAtLambda) + + if (ncores > 1) parallel::stopCluster(cl) - - out + + out } diff --git a/pkg/R/main.R b/pkg/R/main.R index 8f845f4..2cd345d 100644 --- a/pkg/R/main.R +++ b/pkg/R/main.R @@ -21,7 +21,7 @@ #' #TODO: a few examples #' @export valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, maxi=50, - eps=1e-4, kmin=2, kmax=2, rang.min=1, rang.max=10, ncores_outer=1, ncores_inner=3, + eps=1e-4, kmin=2, kmax=4, rang.min=1, rang.max=10, ncores_outer=1, ncores_inner=1, size_coll_mod = 50, verbose=FALSE) { p = dim(X)[2] @@ -54,8 +54,8 @@ valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, X, Y, gamma, mini, maxi, eps) # TODO: 100 = magic number - if (length(grid_lambda)>100) - grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = 100)] + if (length(grid_lambda)>size_coll_mod) + grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)] if (verbose) print("Compute relevant parameters") @@ -63,15 +63,15 @@ valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, #from the grid: S$selected corresponding to selected variables S = selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, gamma, grid_lambda, X, Y, 1e-8, eps, ncores_inner) #TODO: 1e-8 as arg?! eps? - + if (procedure == 'LassoMLE') { if (verbose) print('run the procedure Lasso-MLE') #compute parameter estimations, with the Maximum Likelihood #Estimator, restricted on selected variables. - models <- constructionModelesLassoMLE(phiInit, rhoInit, piInit, gamInit, mini, - maxi, gamma, X, Y, thresh, eps, S$selected, ncores_inner, verbose) + models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, + maxi, gamma, X, Y, thresh, eps, S, ncores_inner, artefact = 1e3, verbose) } else { @@ -87,12 +87,10 @@ valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, # List (index k) of lists (index lambda) of models models_list <- - #if (ncores_k > 1) if (ncores_outer > 1) parLapply(cl, kmin:kmax, computeModels) else lapply(kmin:kmax, computeModels) - #if (ncores_k > 1) if (ncores_outer > 1) parallel::stopCluster(cl) @@ -103,12 +101,13 @@ valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, } # Get summary "tableauRecap" from models ; TODO: jusqu'à ligne 114 à mon avis là c'est faux :/ - tableauRecap = t( sapply( models_list, function(models) { + tableauRecap = sapply( models_list, function(models) { llh = do.call(rbind, lapply(models, function(model) model$llh)) LLH = llh[-1,1] D = llh[-1,2] - c(LLH, D, rep(k, length(model)), 1:length(model)) - } )) + c(LLH, D, rep(k, length(LLH)), 1:length(LLH)) + }) + tableauRecap if (verbose) print('Model selection') tableauRecap = tableauRecap[rowSums(tableauRecap[, 2:4])!=0,] @@ -125,5 +124,5 @@ valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, modSel@BIC_capushe$model else if (selecMod == 'AIC') modSel@AIC_capushe$model - model[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]] + models_list[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]] }