From: Benjamin Goehry Date: Tue, 17 Jan 2017 08:07:16 +0000 (+0100) Subject: constructionModelLassoLME.R X-Git-Url: https://git.auder.net/%7B%7B%20asset%28%27mixstore/images/assets/doc/img/%24%7BgetWhatsApp%28link%29%7D?a=commitdiff_plain;h=b05e34dc0c44a4329f3535790e5741091407e461;p=valse.git constructionModelLassoLME.R --- diff --git a/src/test/generate_test_data/helpers/constructionModelesLassoMLE.R b/src/test/generate_test_data/helpers/constructionModelesLassoMLE.R new file mode 100644 index 0000000..3eac5d1 --- /dev/null +++ b/src/test/generate_test_data/helpers/constructionModelesLassoMLE.R @@ -0,0 +1,58 @@ +constructionModelesLassoMLE = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau,A1,A2){ + #get matrix sizes + n = dim(X)[1]; + p = dim(phiInit)[1] + m = dim(phiInit)[2] + k = dim(phiInit)[3] + L = length(glambda) + + #output parameters + phi = array(0, dim=c(p,m,k,L)) + rho = array(0, dim=c(m,m,k,L)) + Pi = matrix(0, k, L) + lvraisemblance = matrix(0, L, 2) + + for(lambdaIndex in 1:L){ + a = A1[, 1, lambdaIndex] + a[a==0] = c() + if(length(a)==0){ + next + } + EMGLLf = EMGLLF(phiInit[a,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0,X[,a],Y,tau) + + phiLambda = EMGLLf$phi + rhoLambda = EMGLLf$rho + piLambda = EMGLLf$Pi + + for(j in 1:length(a)){ + phi[a[j],,,lambdaIndex] = phiLambda[j,,] + } + rho[,,,lambdaIndex] = rhoLambda + Pi[,lambdaIndex] = piLambda + + dimension = 0 + for(j in 1:p){ + vec = c(2, dim(A2)[2]) + b = A2[j,vec,lambdaIndex] + b[b==0] = c() + if(length(b) > 0){ + phi[A2[j,1,lambdaIndex],b,,lambdaIndex] = 0 + } + c = A1[j,vec,lambdaIndex] + c[c==0] = c() + dimension = dimension + length(c) + } + + #on veut calculer l'EMV avec toutes nos estimations + densite = matrix(0, n, L) + for(i in 1:n){ + for( r in 1:k){ + delta = Y[i,]%*%rho[,,r,lambdaIndex] - (X[i,a]%*%phi[a,,r,lambdaIndex]); + densite[i,lambdaIndex] = densite[i,lambdaIndex] + Pi[r,lambdaIndex]*det(rho[,,r,lambdaIndex])/(sqrt(2*pi))^m*exp(-tcrossprod(delta)/2.0) + } + } + lvraisemblance[lambdaIndex,1] = sum(log(densite[,lambdaIndex])) + lvraisemblance[lambdaIndex,2] = (dimension+m+1)*k-1 + } + return(list(phi=phi, rho=rho, Pi=Pi, lvraisemblance = lvraisemblance)) +} \ No newline at end of file