From: Benjamin Auder <benjamin.auder@somewhere>
Date: Fri, 16 Dec 2016 15:48:27 +0000 (+0100)
Subject: finished translation MATLAB --> R,C ; start debugging...
X-Git-Url: https://git.auder.net/%7B%7B%20asset%28%27mixstore/css/user/doc/pieces/%7B%7B%20targetUrl%20%7D%7D?a=commitdiff_plain;h=8e92c49c15bdacebf46190e7c8279bd227873928;p=valse.git

finished translation MATLAB --> R,C ; start debugging...
---

diff --git a/R/main.R b/R/main.R
index 9817b00..b9b8d5b 100644
--- a/R/main.R
+++ b/R/main.R
@@ -1,5 +1,5 @@
-SelMix = setRefClass(
-	Class = "selmix",
+Valse = setRefClass(
+	Class = "Valse",
 
 	fields = c(
 		# User defined
@@ -7,7 +7,7 @@ SelMix = setRefClass(
 		# regression data (size n*p, where n is the number of observations,
 		# and p is the number of regressors)
 		X = "numeric",
-		# response data (size n*m, where n is the number of observations, 
+		# response data (size n*m, where n is the number of observations,
 		# and m is the number of responses)
 		Y = "numeric",
 
@@ -61,12 +61,12 @@ SelMix = setRefClass(
 		#######################
 		initialize = function(X,Y,...)
 		{
-			"Initialize SelMix object"
+			"Initialize Valse object"
 
 			callSuper(...)
 
-			X <<- X;
-			Y <<- Y;
+			X <<- X
+			Y <<- Y
 			gamma <<- ifelse (hasArg("gamma"), gamma, 1.)
 			mini <<- ifelse (hasArg("mini"), mini, as.integer(5))
 			maxi <<- ifelse (hasArg("maxi"), maxi, as.integer(10))
@@ -88,11 +88,11 @@ SelMix = setRefClass(
 			#smallEM initializes parameters by k-means and regression model in each component,
 			#doing this 20 times, and keeping the values maximizing the likelihood after 10
 			#iterations of the EM algorithm.
-			init = initSmallEM(k,sx.X,sx.Y,sx.eps);
-			phiInit <<- init$phi0;
-			rhoInit <<- init$rho0;
-			piInit	<<- init$pi0;
-			tauInit <<- init$tau0;
+			init = initSmallEM(k,X,Y,eps)
+			phiInit <<- init$phi0
+			rhoInit <<- init$rho0
+			piInit	<<- init$pi0
+			tauInit <<- init$tau0
 		},
 
 		computeGridLambda = function()
@@ -100,8 +100,7 @@ SelMix = setRefClass(
 			"computation of the regularization grid"
 			#(according to explicit formula given by EM algorithm)
 
-			gridLambda <<- gridLambda(sx.phiInit,sx.rhoInit,sx.piInit,sx.tauInit,sx.X,sx.Y,
-				sx.gamma,sx.mini,sx.maxi,sx.eps);
+			gridLambda <<- gridLambda(phiInit,rhoInit,piInit,tauInit,X,Y,gamma,mini,maxi,eps)
 		},
 
 		computeRelevantParameters = function()
@@ -109,10 +108,10 @@ SelMix = setRefClass(
 			"Compute relevant parameters"
 
 			#select variables according to each regularization parameter
-			#from the grid: sx.A1 corresponding to selected variables, and
-			#sx.A2 corresponding to unselected variables.
-			params = selectiontotale(sx.phiInit,sx.rhoInit,sx.piInit,sx.tauInit,sx.mini,sx.maxi,
-				sx.gamma,sx.gridLambda,sx.X,sx.Y,sx.seuil,sx.eps);
+			#from the grid: A1 corresponding to selected variables, and
+			#A2 corresponding to unselected variables.
+			params = selectiontotale(
+				phiInit,rhoInit,piInit,tauInit,mini,maxi,gamma,gridLambda,X,Y,seuil,eps)
 			A1 <<- params$A1
 			A2 <<- params$A2
 			Rho <<- params$Rho
@@ -125,9 +124,8 @@ SelMix = setRefClass(
 
 			#compute parameter estimations, with the Maximum Likelihood
 			#Estimator, restricted on selected variables.
-			res = constructionModelesLassoMLE(sx.phiInit,sx.rhoInit,sx.piInit,sx.tauInit,
-				sx.mini,sx.maxi,sx.gamma,sx.gridLambda,sx.X,sx.Y,sx.seuil,sx.eps,sx.A1,sx.A2);
-			return (list( phi=res$phi, rho=res$rho, pi=res$pi))
+			return ( constructionModelesLassoMLE(
+				phiInit,rhoInit,piInit,tauInit,mini,maxi,gamma,gridLambda,X,Y,seuil,eps,A1,A2) )
 		},
 
 		runProcedure2 = function()
@@ -136,75 +134,76 @@ SelMix = setRefClass(
 
 			#compute parameter estimations, with the Low Rank
 			#Estimator, restricted on selected variables.
-			return (constructionModelesLassoRank(sx.Pi,sx.Rho,sx.mini,sx.maxi,sx.X,sx.Y,sx.eps,
-				sx.A1,sx.rangmin,sx.rangmax)$phi)
+			return ( constructionModelesLassoRank(Pi,Rho,mini,maxi,X,Y,eps,
+				A1,rangmin,rangmax) )
 		},
 
-		run = function(procedure)
+		run = function()
 		{
 			"main loop: over all k and all lambda"
 
 			# Run the all procedure, 1 with the
 			#maximum likelihood refitting, and 2 with the Low Rank refitting.
-				p = dim(phiInit)[1]
-				m = dim(phiInit)[2]
-				for (k in kmin:kmax)
+			p = dim(phiInit)[1]
+			m = dim(phiInit)[2]
+			for (k in kmin:kmax)
+			{
+				print(k)
+				initParameters(k)
+				computeGridLambda()
+				computeRelevantParameters()
+				if (procedure == 1)
 				{
-					print(k)
-					initParameters(k)
-					computeGridLambda()
-					computeRelevantParameters()
-					if (procedure == 1)
+					r1 = runProcedure1()
+					Phi2 = Phi
+					Rho2 = Rho
+					Pi2 = Pi
+					p = ncol(X)
+					m = ncol(Y)
+					if size(Phi2) == 0
+					{
+						Phi[,,1:k] = r1$phi
+						Rho[,,1:k] = r1$rho
+						Pi[1:k,] = r1$pi
+					} else
+					{
+						Phi = array(0., dim=c(p,m,kmax,dim(Phi2)[4]+dim(r1$phi)[4]))
+						Phi[,,1:(dim(Phi2)[3]),1:(dim(Phi2)[4])] = Phi2
+						Phi[,,1:k,dim(Phi2)[4]+1] = r1$phi
+						Rho = array(0., dim=c(m,m,kmax,dim(Rho2)[4]+dim(r1$rho)[4]))
+						Rho[,,1:(dim(Rho2)[3]),1:(dim(Rho2)[4])] = Rho2
+						Rho[,,1:k,dim(Rho2)[4]+1] = r1$rho
+						Pi = array(0., dim=c(kmax,dim(Pi2)[2]+dim(r1$pi)[2]))
+						Pi[1:nrow(Pi2),1:ncol(Pi2)] = Pi2
+						Pi[1:k,ncol(Pi2)+1] = r1$pi
+					}
+				} else
+				{
+					phi = runProcedure2()$phi
+					Phi2 = Phi
+					if (dim(Phi2)[1] == 0)
+					{
+						Phi(:,:,1:k,:) = phi
+					} else
 					{
-						r1 = runProcedure1(sx)
-						Phi2 = Phi
-						Rho2 = Rho
-						Pi2 = Pi
-						p = ncol(X)
-						m = ncol(Y)
-						if size(Phi2) == 0 #TODO: continue translation MATLAB --> R
-						Phi(:,:,1:k,:) = r1$phi;
-						Rho(:,:,1:k,:) = r1$rho;
-						Pi(1:k,:) = r1$pi;
-						else
-						Phi = zeros(p,m,sx.kmax,size(Phi2,4)+size(r1$phi,4));
-						Phi(:,:,1:size(Phi2,3),1:size(Phi2,4)) = Phi2;
-						Phi(:,:,1:k,size(Phi2,4)+1:end) = r1$phi;
-						Rho = zeros(m,m,sx.kmax,size(Rho2,4)+size(r1$rho,4));
-						Rho(:,:,1:size(Rho2,3),1:size(Rho2,4)) = Rho2;
-						Rho(:,:,1:k,size(Rho2,4)+1:end) = r1$rho;
-						Pi = zeros(sx.kmax,size(Pi2,2)+size(r1$pi,2));
-						Pi(1:size(Pi2,1),1:size(Pi2,2)) = Pi2;
-						Pi(1:k,size(Pi2,2)+1:end) = r1$pi;
-						end
-				else
-						[phi] = runProcedure2(sx);
-						phi
-						Phi2 = sx.Phi;
-						if size(Phi2,1) == 0
-						sx.Phi(:,:,1:k,:) = phi;
-						else
 						size(Phi2)
-						sx.Phi = zeros(p,m,sx.kmax,size(Phi2,4)+size(phi,4));
-						size(sx.Phi)
-						sx.Phi(:,:,1:size(Phi2,3),1:size(Phi2,4)) = Phi2;
-						sx.Phi(:,:,1:k,size(Phi2,4)+1:end) = phi;
-						end
-						
-				end
-				
-				
-				end
-		end
-		
+						Phi = zeros(p,m,kmax,size(Phi2,4)+size(phi,4))
+						size(Phi)
+						Phi(:,:,1:size(Phi2,3),1:size(Phi2,4)) = Phi2
+						Phi(:,:,1:k,size(Phi2,4)+1:end) = phi
+					}
+				}
+			}
+		}
+
 		##################################################
-		#pruning: select only one (or a few best ?!) model
+		#TODO: pruning: select only one (or a few best ?!) model
 		##################################################
 		#
-		# 		function[model] selectModel(sx)
+		# 		function[model] selectModel(
 		# 			#TODO
-		# 			#model = sxModel(...);
+		# 			#model = odel(...)
 		# 		end
-		
+
 		)
 )
diff --git a/src/Makevars b/src/Makevars
index bec17f0..6068f39 100644
--- a/src/Makevars
+++ b/src/Makevars
@@ -1,4 +1,8 @@
-PKG_CFLAGS=-g -I.
+#Debug flags
+PKG_CFLAGS=-g -I./sources
+
+#Prod flags:
+#PKG_CFLAGS=-O2 -I./sources
 
 PKG_LIBS=-lm
 
diff --git a/src/adapters/a.EMGLLF.c b/src/adapters/a.EMGLLF.c
index 747a3c9..f70d69d 100644
--- a/src/adapters/a.EMGLLF.c
+++ b/src/adapters/a.EMGLLF.c
@@ -1,6 +1,6 @@
 #include <R.h>
 #include <Rdefines.h>
-#include "sources/EMGLLF.h"
+#include "EMGLLF.h"
 
 SEXP EMGLLF(
 	SEXP phiInit_,
@@ -17,7 +17,7 @@ SEXP EMGLLF(
 ) {
 	// Get matrices dimensions
 	int n = INTEGER(getAttrib(X_, R_DimSymbol))[0];
-	SEXP dim = getAttrib(phiInit_, R_DimSymbol)
+	SEXP dim = getAttrib(phiInit_, R_DimSymbol);
 	int p = INTEGER(dim)[0];
 	int m = INTEGER(dim)[1];
 	int k = INTEGER(dim)[2];
@@ -57,7 +57,7 @@ SEXP EMGLLF(
 	PROTECT(pi = allocVector(REALSXP, k));
 	PROTECT(LLF = allocVector(REALSXP, maxi-mini+1));
 	PROTECT(S = allocArray(REALSXP, dimPhiS));
-	double* pPhi=REAL(phi), pRho=REAL(rho), pPi=REAL(pi), pLLF=REAL(LLF), pS=REAL(S);
+	double *pPhi=REAL(phi), *pRho=REAL(rho), *pPi=REAL(pi), *pLLF=REAL(LLF), *pS=REAL(S);
 
 	////////////////////
 	// Call to EMGLLF //
diff --git a/src/adapters/a.EMGrank.c b/src/adapters/a.EMGrank.c
index f7fc192..763ff4e 100644
--- a/src/adapters/a.EMGrank.c
+++ b/src/adapters/a.EMGrank.c
@@ -1,6 +1,6 @@
 #include <R.h>
 #include <Rdefines.h>
-#include "sources/EMGLLF.h"
+#include "EMGrank.h"
 
 SEXP EMGLLF(
 	SEXP Pi_,
@@ -16,7 +16,7 @@ SEXP EMGLLF(
 	SEXP dimX = getAttrib(X_, R_DimSymbol);
 	int n = INTEGER(dimX)[0];
 	int p = INTEGER(dimX)[1];
-	SEXP dimRho = getAttrib(Rho_, R_DimSymbol)
+	SEXP dimRho = getAttrib(Rho_, R_DimSymbol);
 	int m = INTEGER(dimRho)[0];
 	int k = INTEGER(dimRho)[2];
 
@@ -46,7 +46,7 @@ SEXP EMGLLF(
 	pDimPhi[0] = p; pDimPhi[1] = m; pDimPhi[2] = k;
 	PROTECT(phi = allocArray(REALSXP, dimPhi));
 	PROTECT(LLF = allocVector(REALSXP, 1));
-	double* pPhi=REAL(phi), pLLF=REAL(LLF);
+	double *pPhi=REAL(phi), *pLLF=REAL(LLF);
 
 	/////////////////////
 	// Call to EMGrank //
diff --git a/src/adapters/a.constructionModelesLassoMLE.c b/src/adapters/a.constructionModelesLassoMLE.c
index 7f578fb..8543658 100644
--- a/src/adapters/a.constructionModelesLassoMLE.c
+++ b/src/adapters/a.constructionModelesLassoMLE.c
@@ -1,6 +1,6 @@
 #include <R.h>
 #include <Rdefines.h>
-#include "sources/EMGLLF.h"
+#include "constructionModelesLassoMLE.h"
 
 SEXP EMGLLF(
 	SEXP phiInit_,
@@ -20,7 +20,7 @@ SEXP EMGLLF(
 ) {
 	// Get matrices dimensions
 	int n = INTEGER(getAttrib(X_, R_DimSymbol))[0];
-	SEXP dim = getAttrib(phiInit_, R_DimSymbol)
+	SEXP dim = getAttrib(phiInit_, R_DimSymbol);
 	int p = INTEGER(dim)[0];
 	int m = INTEGER(dim)[1];
 	int k = INTEGER(dim)[2];
@@ -63,7 +63,7 @@ SEXP EMGLLF(
 	PROTECT(rho = allocArray(REALSXP, dimRho));
 	PROTECT(pi = allocMatrix(REALSXP, k, L));
 	PROTECT(lvraisemblance = allocMatrix(REALSXP, L, 2));
-	double* pPhi=REAL(phi), pRho=REAL(rho), pPi=REAL(pi), pLvraisemblance=REAL(lvraisemblance);
+	double *pPhi=REAL(phi), *pRho=REAL(rho), *pPi=REAL(pi), *pLvraisemblance=REAL(lvraisemblance);
 
 	/////////////////////////////////////////
 	// Call to constructionModelesLassoMLE //
diff --git a/src/adapters/a.constructionModelesLassoRank.c b/src/adapters/a.constructionModelesLassoRank.c
index 359290c..0d056c8 100644
--- a/src/adapters/a.constructionModelesLassoRank.c
+++ b/src/adapters/a.constructionModelesLassoRank.c
@@ -1,6 +1,6 @@
 #include <R.h>
 #include <Rdefines.h>
-#include "sources/EMGLLF.h"
+#include "constructionModelesLassoRank.h"
 
 SEXP EMGLLF(
 	SEXP Pi_,
@@ -12,13 +12,13 @@ SEXP EMGLLF(
 	SEXP tau_,
 	SEXP A1_,
 	SEXP rangmin_,
-	SEXP rangmax
+	SEXP rangmax_
 ) {
 	// Get matrices dimensions
 	SEXP dimX = getAttrib(X_, R_DimSymbol);
 	int n = INTEGER(dimX)[0];
 	int p = INTEGER(dimX)[1];
-	SEXP dimRho = getAttrib(Rho_, R_DimSymbol)
+	SEXP dimRho = getAttrib(Rho_, R_DimSymbol);
 	int m = INTEGER(dimRho)[0];
 	int k = INTEGER(dimRho)[2];
 	int L = INTEGER(getAttrib(A1_, R_DimSymbol))[1];
@@ -39,7 +39,7 @@ SEXP EMGLLF(
 	double* Rho = REAL(Rho_);
 	double* X = REAL(X_);
 	double* Y = REAL(Y_);
-	double* A1 = REAL(A1_);
+	int* A1 = INTEGER(A1_);
 
 	/////////////
 	// OUTPUTS //
@@ -52,7 +52,7 @@ SEXP EMGLLF(
 	pDimPhi[0] = p; pDimPhi[1] = m; pDimPhi[2] = k; pDimPhi[3] = L*Size;
 	PROTECT(phi = allocArray(REALSXP, dimPhi));
 	PROTECT(lvraisemblance = allocMatrix(REALSXP, L*Size, 2));
-	double* pPhi=REAL(phi), pLvraisemblance=REAL(lvraisemblance);
+	double *pPhi=REAL(phi), *pLvraisemblance=REAL(lvraisemblance);
 
 	//////////////////////////////////////////
 	// Call to constructionModelesLassoRank //
diff --git a/src/adapters/a.selectiontotale.c b/src/adapters/a.selectiontotale.c
index 1124d71..3d647fb 100644
--- a/src/adapters/a.selectiontotale.c
+++ b/src/adapters/a.selectiontotale.c
@@ -1,6 +1,6 @@
 #include <R.h>
 #include <Rdefines.h>
-#include "sources/EMGLLF.h"
+#include "selectiontotale.h"
 
 SEXP EMGLLF(
 	SEXP phiInit_,
@@ -20,7 +20,7 @@ SEXP EMGLLF(
 	SEXP dimX = getAttrib(X_, R_DimSymbol);
 	int n = INTEGER(dimX)[0];
 	int p = INTEGER(dimX)[1];
-	SEXP dimRho = getAttrib(rhoInit_, R_DimSymbol)
+	SEXP dimRho = getAttrib(rhoInit_, R_DimSymbol);
 	int m = INTEGER(dimRho)[0];
 	int k = INTEGER(dimRho)[2];
 	int L = INTEGER(getAttrib(glambda_, R_LengthSymbol))[0];
@@ -58,7 +58,7 @@ SEXP EMGLLF(
 	PROTECT(A2 = allocArray(REALSXP, dimA));
 	PROTECT(rho = allocArray(REALSXP, dimRho);
 	PROTECT(pi = allocMatrix(REALSXP, k, L));
-	double* pA1=REAL(A1), pA2=REAL(A2), pRho=REAL(rho), pPi=REAL(pi);
+	double *pA1=REAL(A1), *pA2=REAL(A2), *pRho=REAL(rho), *pPi=REAL(pi);
 
 	/////////////////////////////
 	// Call to selectiontotale //
diff --git a/src/sources/.constructionModelesLassoRank.c.swp b/src/sources/.constructionModelesLassoRank.c.swp
deleted file mode 100644
index ba4ef92..0000000
Binary files a/src/sources/.constructionModelesLassoRank.c.swp and /dev/null differ
diff --git a/src/sources/EMGLLF.c b/src/sources/EMGLLF.c
index 0c39d6e..6966e9c 100644
--- a/src/sources/EMGLLF.c
+++ b/src/sources/EMGLLF.c
@@ -1,31 +1,32 @@
-#include "EMGLLF.h"
+#include "utils.h"
+#include <stdlib.h>
 #include <gsl/gsl_linalg.h>
 
 // TODO: don't recompute indexes every time......
 void EMGLLF(
 	// IN parameters
-	const double* phiInit,  // parametre initial de moyenne renormalisé
-	const double* rhoInit,  // parametre initial de variance renormalisé
-	const double* piInit,   // parametre initial des proportions
-	const double* gamInit,  // paramètre initial des probabilités a posteriori de chaque échantillon
-	int mini,      // nombre minimal d'itérations dans l'algorithme EM
-	int maxi,      // nombre maximal d'itérations dans l'algorithme EM
-	double gamma,  // valeur de gamma : puissance des proportions dans la pénalisation pour un Lasso adaptatif
+	const double* phiInit, // parametre initial de moyenne renormalisé
+	const double* rhoInit, // parametre initial de variance renormalisé
+	const double* piInit,	 // parametre initial des proportions
+	const double* gamInit, // paramètre initial des probabilités a posteriori de chaque échantillon
+	int mini, // nombre minimal d'itérations dans l'algorithme EM
+	int maxi, // nombre maximal d'itérations dans l'algorithme EM
+	double gamma, // puissance des proportions dans la pénalisation pour un Lasso adaptatif
 	double lambda, // valeur du paramètre de régularisation du Lasso
-	const double* X,     // régresseurs
-	const double* Y,     // réponse
-	double tau,    // seuil pour accepter la convergence
+	const double* X, // régresseurs
+	const double* Y, // réponse
+	double tau, // seuil pour accepter la convergence
 	// OUT parameters (all pointers, to be modified)
-	double* phi,  // parametre de moyenne renormalisé, calculé par l'EM
-	double* rho,  // parametre de variance renormalisé, calculé par l'EM
-	double* pi,   // parametre des proportions renormalisé, calculé par l'EM
-	double* LLF,   // log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres
-    double* S,
+	double* phi, // parametre de moyenne renormalisé, calculé par l'EM
+	double* rho, // parametre de variance renormalisé, calculé par l'EM
+	double* pi, // parametre des proportions renormalisé, calculé par l'EM
+	double* LLF, // log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres
+	double* S,
 	// additional size parameters
-	int n,         // nombre d'echantillons
-	int p,         // nombre de covariables
-	int m,         // taille de Y (multivarié)
-	int k)         // nombre de composantes dans le mélange
+	int n, // nombre d'echantillons
+	int p, // nombre de covariables
+	int m, // taille de Y (multivarié)
+	int k) // nombre de composantes dans le mélange
 {
 	//Initialize outputs
 	copyArray(phiInit, phi, p*m*k);
@@ -174,7 +175,8 @@ void EMGLLF(
 		double prodGam2logPi2 = 0.;
 		for (int v=0; v<k; v++)
 			prodGam2logPi2 += gam2[v] * log(pi2[v]);
-		while (-invN*a + lambda*piPowGammaDotB < -invN*prodGam2logPi2 + lambda*pi2PowGammaDotB && kk<1000)
+		while (-invN*a + lambda*piPowGammaDotB < -invN*prodGam2logPi2 + lambda*pi2PowGammaDotB
+			&& kk<1000)
 		{
 			//pi2=pi+0.1^kk*(1/n*gam2-pi);
 			for (int v=0; v<k; v++)
@@ -223,7 +225,7 @@ void EMGLLF(
 					sumNy21 += nY21[ai(u,mm,r,n,m,k)];
 				nY2[mi(mm,r,m,k)] = sumNy21;
 				//rho(mm,mm,r)=((ps(mm,r)+sqrt(ps(mm,r)^2+4*nY2(mm,r)*(gam2(r))))/(2*nY2(mm,r)));
-				rho[ai(mm,mm,k,m,m,k)] = ( ps[mi(mm,r,m,k)] + sqrt( ps[mi(mm,r,m,k)]*ps[mi(mm,r,m,k)] 
+				rho[ai(mm,mm,k,m,m,k)] = ( ps[mi(mm,r,m,k)] + sqrt( ps[mi(mm,r,m,k)]*ps[mi(mm,r,m,k)]
 					+ 4*nY2[mi(mm,r,m,k)] * (gam2[r]) ) ) / (2*nY2[mi(mm,r,m,k)]);
 			}
 		}
@@ -233,22 +235,23 @@ void EMGLLF(
 			{
 				for (int mm=0; mm<m; mm++)
 				{
-					//sum(phi(1:j-1,mm,r).*transpose(Gram2(j,1:j-1,r)))+sum(phi(j+1:p,mm,r).*transpose(Gram2(j,j+1:p,r)))
+					//sum(phi(1:j-1,mm,r).*transpose(Gram2(j,1:j-1,r)))+sum(phi(j+1:p,mm,r)
+					// .*transpose(Gram2(j,j+1:p,r)))
 					double dotPhiGram2 = 0.0;
 					for (int u=0; u<j; u++)
 						dotPhiGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)];
 					for (int u=j+1; u<p; u++)
 						dotPhiGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)];
 					//S(j,r,mm)=-rho(mm,mm,r)*ps2(j,mm,r)+sum(phi(1:j-1,mm,r).*transpose(Gram2(j,1:j-1,r)))
-					//    +sum(phi(j+1:p,mm,r).*transpose(Gram2(j,j+1:p,r)));
+					//		+sum(phi(j+1:p,mm,r).*transpose(Gram2(j,j+1:p,r)));
 					S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)] + dotPhiGram2;
 					if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pow(pi[r],gamma))
 						phi[ai(j,mm,r,p,m,k)] = 0;
 					else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pow(pi[r],gamma))
-						phi[ai(j,mm,r,p,m,k)] = (n*lambda*pow(pi[r],gamma) - S[ai(j,mm,r,p,m,k)]) 
+						phi[ai(j,mm,r,p,m,k)] = (n*lambda*pow(pi[r],gamma) - S[ai(j,mm,r,p,m,k)])
 							/ Gram2[ai(j,j,r,p,p,k)];
 					else
-						phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pow(pi[r],gamma) + S[ai(j,mm,r,p,m,k)]) 
+						phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pow(pi[r],gamma) + S[ai(j,mm,r,p,m,k)])
 							/ Gram2[ai(j,j,r,p,p,k)];
 				}
 			}
@@ -270,7 +273,7 @@ void EMGLLF(
 			{
 				//Compute
 				//Gam(i,r) = Pi(r) * det(Rho(:,:,r)) * exp( -1/2 * (Y(i,:)*Rho(:,:,r) - X(i,:)...
-				//    *phi(:,:,r)) * transpose( Y(i,:)*Rho(:,:,r) - X(i,:)*phi(:,:,r) ) );
+				//		*phi(:,:,r)) * transpose( Y(i,:)*Rho(:,:,r) - X(i,:)*phi(:,:,r) ) );
 				//split in several sub-steps
 				
 				//compute Y(i,:)*rho(:,:,r)
@@ -289,7 +292,8 @@ void EMGLLF(
 						XiPhiR[u] += X[mi(i,v,n,p)] * phi[ai(v,u,r,p,m,k)];
 				}
 
-				// compute dotProduct < Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) . Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) >
+				//compute dotProduct
+				// < Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) . Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) >
 				dotProducts[r] = 0.0;
 				for (int u=0; u<m; u++)
 					dotProducts[r] += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]);
diff --git a/src/sources/EMGLLF.h b/src/sources/EMGLLF.h
index c75b89d..df4ae7c 100644
--- a/src/sources/EMGLLF.h
+++ b/src/sources/EMGLLF.h
@@ -1,31 +1,29 @@
-#ifndef select_EMGLLF_H
-#define select_EMGLLF_H
-
-#include "ioutils.h"
+#ifndef valse_EMGLLF_H
+#define valse_EMGLLF_H
 
 void EMGLLF(
 	// IN parameters
-	const Real* phiInit,
-	const Real* rhoInit,
-	const Real* piInit,
-	const Real* gamInit,
-	Int mini,
-	Int maxi,
-	Real gamma,
-	Real lambda,
-	const Real* X,
-	const Real* Y,
-	Real tau,
+	const double* phiInit,
+	const double* rhoInit,
+	const double* piInit,
+	const double* gamInit,
+	int mini,
+	int maxi,
+	double gamma,
+	double lambda,
+	const double* X,
+	const double* Y,
+	double tau,
 	// OUT parameters
-	Real* phi,
-	Real* rho,
-	Real* pi,
-	Real* LLF,
-	Real* S,
+	double* phi,
+	double* rho,
+	double* pi,
+	double* LLF,
+	double* S,
 	// additional size parameters
-	mwSize n, 
-	mwSize p, 
-	mwSize m, 
-	mwSize k);
+	int n,
+	int p,
+	int m,
+	int k);
 
 #endif
diff --git a/src/sources/EMGrank.c b/src/sources/EMGrank.c
index 2e85ce6..5ee44e3 100644
--- a/src/sources/EMGrank.c
+++ b/src/sources/EMGrank.c
@@ -1,5 +1,6 @@
-#include "EMGrank.h"
+#include <stdlib.h>
 #include <gsl/gsl_linalg.h>
+#include "utils.h"
 
 // Compute pseudo-inverse of a square matrix
 static double* pinv(const double* matrix, int dim)
@@ -82,8 +83,7 @@ void EMGrank(
 	int* Z = (int*)calloc(n, sizeof(int));
 
 	//Initialize phi to zero, because some M loops might exit before phi affectation
-	for (int i=0; i<p*m*k; i++)
-		phi[i] = 0.0;
+	zeroArray(phi, p*m*k);
 
 	while (ite<mini || (ite<maxi && sumDeltaPhi>tau))
 	{
diff --git a/src/sources/EMGrank.h b/src/sources/EMGrank.h
index 8c0e657..53a1d01 100644
--- a/src/sources/EMGrank.h
+++ b/src/sources/EMGrank.h
@@ -1,25 +1,23 @@
-#ifndef select_EMGrank_H
-#define select_EMGrank_H
-
-#include "ioutils.h"
+#ifndef valse_EMGrank_H
+#define valse_EMGrank_H
 
 void EMGrank(
 	// IN parameters
-	const Real* Pi,
-	const Real* Rho,
-	Int mini,    
-	Int maxi,
-	const Real* X,
-	const Real* Y,
-	Real tau,
-	const Int* rank,
+	const double* Pi,
+	const double* Rho,
+	int mini,
+	int maxi,
+	const double* X,
+	const double* Y,
+	double tau,
+	const int* rank,
 	// OUT parameters
-	Real* phi,
-	Real* LLF,
+	double* phi,
+	double* LLF,
 	// additional size parameters
-	mwSize n,       
-	mwSize p,
-	mwSize m,
-	mwSize k);
+	int n,
+	int p,
+	int m,
+	int k);
 
 #endif
diff --git a/src/sources/constructionModelesLassoMLE.c b/src/sources/constructionModelesLassoMLE.c
index 91119e9..272f01b 100644
--- a/src/sources/constructionModelesLassoMLE.c
+++ b/src/sources/constructionModelesLassoMLE.c
@@ -1,8 +1,8 @@
 #include "EMGLLF.h"
-#include "constructionModelesLassoMLE.h"
+#include "utils.h"
+#include <stdlib.h>
 #include <gsl/gsl_linalg.h>
 #include <omp.h>
-#include "omp_num_threads.h"
 
 // TODO: comment on constructionModelesLassoMLE purpose
 void constructionModelesLassoMLE(
diff --git a/src/sources/constructionModelesLassoMLE.h b/src/sources/constructionModelesLassoMLE.h
index 90712e3..bc79a1e 100644
--- a/src/sources/constructionModelesLassoMLE.h
+++ b/src/sources/constructionModelesLassoMLE.h
@@ -1,34 +1,32 @@
-#ifndef select_constructionModelesLassoMLE_H
-#define select_constructionModelesLassoMLE_H
-
-#include "ioutils.h"
+#ifndef valse_constructionModelesLassoMLE_H
+#define valse_constructionModelesLassoMLE_H
 
 void constructionModelesLassoMLE(
-	// IN parameters 
-	const Real* phiInit,
-	const Real* rhoInit,
-	const Real* piInit,
-	const Real* gamInit,
-	Int mini,
-	Int maxi,
-	Real gamma,
-	const Real* glambda,
-	const Real* X,
-	const Real* Y,
-	Real seuil,
-	Real tau,
-	const Int* A1,
-	const Int* A2,
+	// IN parameters
+	const double* phiInit,
+	const double* rhoInit,
+	const double* piInit,
+	const double* gamInit,
+	int mini,
+	int maxi,
+	double gamma,
+	const double* glambda,
+	const double* X,
+	const double* Y,
+	double seuil,
+	double tau,
+	const int* A1,
+	const int* A2,
 	// OUT parameters
-	Real* phi,
-    Real* rho,
-	Real* pi,
-    Real* lvraisemblance,
+	double* phi,
+	double* rho,
+	double* pi,
+	double* lvraisemblance,
 	// additional size parameters
-	mwSize n,
-	mwSize p,
-	mwSize m,
-	mwSize k,
-	mwSize L);
+	int n,
+	int p,
+	int m,
+	int k,
+	int L);
 
 #endif
diff --git a/src/sources/constructionModelesLassoRank.c b/src/sources/constructionModelesLassoRank.c
index eaa83c4..943d478 100644
--- a/src/sources/constructionModelesLassoRank.c
+++ b/src/sources/constructionModelesLassoRank.c
@@ -1,8 +1,8 @@
-#include "EMGrank.h"
-#include "constructionModelesLassoRank.h"
-#include <gsl/gsl_linalg.h>
+#include <stdlib.h>
 #include <omp.h>
-#include "omp_num_threads.h"
+#include <gsl/gsl_linalg.h>
+#include "EMGrank.h"
+#include "utils.h"
 
 // TODO: comment on constructionModelesLassoRank purpose
 void constructionModelesLassoRank(
diff --git a/src/sources/constructionModelesLassoRank.h b/src/sources/constructionModelesLassoRank.h
index 3cecfab..d1be4a8 100644
--- a/src/sources/constructionModelesLassoRank.h
+++ b/src/sources/constructionModelesLassoRank.h
@@ -1,29 +1,27 @@
-#ifndef select_constructionModelesLassoRank_H
-#define select_constructionModelesLassoRank_H
-
-#include "ioutils.h"
+#ifndef valse_constructionModelesLassoRank_H
+#define valse_constructionModelesLassoRank_H
 
 // Main job on raw inputs (after transformation from mxArray)
 void constructionModelesLassoRank(
-	// IN parameters 
-	const Real* Pi,
-	const Real* Rho,
-	Int mini,
-	Int maxi,
-	const Real* X,
-	const Real* Y,
-	Real tau,
-	const Int* A1,
-	Int rangmin,
-	Int rangmax,
+	// IN parameters
+	const double* Pi,
+	const double* Rho,
+	int mini,
+	int maxi,
+	const double* X,
+	const double* Y,
+	double tau,
+	const int* A1,
+	int rangmin,
+	int rangmax,
 	// OUT parameters
-	Real* phi,
-    Real* lvraisemblance,
-    // additional size parameters
-	mwSize n,         
-	mwSize p,
-	mwSize m,
-	mwSize k,
-	mwSize L);
+	double* phi,
+	double* lvraisemblance,
+	// additional size parameters
+	int n,
+	int p,
+	int m,
+	int k,
+	int L);
 
 #endif
diff --git a/src/sources/selectiontotale.c b/src/sources/selectiontotale.c
index f3ed95b..e7e32c8 100644
--- a/src/sources/selectiontotale.c
+++ b/src/sources/selectiontotale.c
@@ -1,34 +1,34 @@
-#include "selectiontotale.h"
-#include "EMGLLF.h"
+#include <stdlib.h>
 #include <omp.h>
-#include "omp_num_threads.h"
+#include "EMGLLF.h"
+#include "utils.h"
 
 // Main job on raw inputs (after transformation from mxArray)
 void selectiontotale(
-	// IN parameters 
-	const Real* phiInit,   // parametre initial de moyenne renormalisé
-	const Real* rhoInit,   // parametre initial de variance renormalisé
-	const Real* piInit,    // parametre initial des proportions
-	const Real* gamInit,   // paramètre initial des probabilités a posteriori de chaque échantillon
-	Int mini,       // nombre minimal d'itérations dans lambdaIndex'algorithme EM	
-	Int maxi,       // nombre maximal d'itérations dans lambdaIndex'algorithme EM
-	Real gamma,   // valeur de gamma : puissance des proportions dans la pénalisation pour un Lasso adaptatif
-	const Real* glambda, // valeur des paramètres de régularisation du Lasso
-	const Real* X,      // régresseurs
-	const Real* Y,      // réponse
-	Real seuil,   // seuil pour prendre en compte une variable
-	Real tau,     // seuil pour accepter la convergence
+	// IN parameters
+	const double* phiInit, // parametre initial de moyenne renormalisé
+	const double* rhoInit, // parametre initial de variance renormalisé
+	const double* piInit,// parametre initial des proportions
+	const double* gamInit, // paramètre initial des probabilités a posteriori de chaque échantillon
+	int mini, // nombre minimal d'itérations dans lambdaIndex'algorithme EM
+	int maxi, // nombre maximal d'itérations dans lambdaIndex'algorithme EM
+	double gamma, // valeur de gamma : puissance des proportions dans la pénalisation pour un Lasso adaptatif
+	const double* glambda, // valeur des paramètres de régularisation du Lasso
+	const double* X,// régresseurs
+	const double* Y,// réponse
+	double seuil, // seuil pour prendre en compte une variable
+	double tau, // seuil pour accepter la convergence
 	// OUT parameters (all pointers, to be modified)
-	Int* A1,         // matrice des coefficients des parametres selectionnes
-	Int* A2,         // matrice des coefficients des parametres non selectionnes
-	Real* Rho,        // estimateur ainsi calculé par le Lasso
-	Real* Pi,          // estimateur ainsi calculé par le Lasso
+	int* A1, // matrice des coefficients des parametres selectionnes
+	int* A2, // matrice des coefficients des parametres non selectionnes
+	double* Rho,// estimateur ainsi calculé par le Lasso
+	double* Pi,// estimateur ainsi calculé par le Lasso
 	// additional size parameters
-	mwSize n,              // taille de lambdaIndex'echantillon                
-	mwSize p,              // nombre de covariables
-	mwSize m,              // taille de Y (multivarié)
-	mwSize k,              // nombre de composantes
-	mwSize L)             // taille de glambda
+	int n,// taille de lambdaIndex'echantillon
+	int p,// nombre de covariables
+	int m,// taille de Y (multivarié)
+	int k,// nombre de composantes
+	int L) // taille de glambda
 {
 	// Fill outputs with zeros: they might not be assigned
 	for (int u=0; u<p*(m+1)*L; u++)
@@ -40,9 +40,9 @@ void selectiontotale(
 		Rho[u] = 0.0;
 	for (int u=0; u<k*L; u++)
 		Pi[u] = 0.0;
-	
+
 	//initiate parallel section
-	mwSize lambdaIndex;
+	int lambdaIndex;
 	omp_set_num_threads(OMP_NUM_THREADS);
 	#pragma omp parallel default(shared) private(lambdaIndex)
 	{
@@ -50,89 +50,89 @@ void selectiontotale(
 	for (lambdaIndex=0; lambdaIndex<L; lambdaIndex++)
 	{
 		//allocate output variables
-		Real* phi = (Real*)malloc(p*m*k*sizeof(Real));
-		Real* rho = (Real*)malloc(m*m*k*sizeof(Real));
-		Real* pi = (Real*)malloc(k*sizeof(Real));
-		Real* LLF = (Real*)malloc(maxi*sizeof(Real));
-		Real* S = (Real*)malloc(p*m*k*sizeof(Real));
+		double* phi = (double*)malloc(p*m*k*sizeof(double));
+		double* rho = (double*)malloc(m*m*k*sizeof(double));
+		double* pi = (double*)malloc(k*sizeof(double));
+		double* LLF = (double*)malloc(maxi*sizeof(double));
+		double* S = (double*)malloc(p*m*k*sizeof(double));
 		EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda[lambdaIndex],X,Y,tau,
 			phi,rho,pi,LLF,S,
 			n,p,m,k);
 		free(LLF);
 		free(S);
-		
+
 		//Si un des coefficients est supérieur au seuil, on garde cette variable
-		mwSize* selectedVariables = (mwSize*)calloc(p*m,sizeof(mwSize));
-		mwSize* discardedVariables = (mwSize*)calloc(p*m,sizeof(mwSize));
+		int* selectedVariables = (int*)calloc(p*m,sizeof(int));
+		int* discardedVariables = (int*)calloc(p*m,sizeof(int));
 		int atLeastOneSelectedVariable = 0;
-		for (mwSize j=0; j<p; j++)
+		for (int j=0; j<p; j++)
 		{
-			mwSize cpt = 0;
-			mwSize cpt2 = 0;
-			for (mwSize jj=0; jj<m; jj++)
+			int cpt = 0;
+			int cpt2 = 0;
+			for (int jj=0; jj<m; jj++)
 			{
-				Real maxPhi = 0.0;
-				for (mwSize r=0; r<k; r++)
+				double maxPhi = 0.0;
+				for (int r=0; r<k; r++)
 				{
-					if (fabs(phi[j*m*k+jj*k+r]) > maxPhi)
-						maxPhi = fabs(phi[j*m*k+jj*k+r]);
+					if (fabs(phi[ai(j,jj,r,p,m,k)]) > maxPhi)
+						maxPhi = fabs(phi[ai(j,jj,r,p,m,k)]);
 				}
 				if (maxPhi > seuil)
 				{
-					selectedVariables[j*m+cpt] = jj+1;
+					selectedVariables[mi(j,cpt,p,m)] = jj+1;
 					atLeastOneSelectedVariable = 1;
 					cpt++;
 				}
 				else
 				{
-					discardedVariables[j*m+cpt2] = jj+1;
+					discardedVariables[mi(j,cpt2,p,m)] = jj+1;
 					cpt2++;
 				}
 			}
 		}
 		free(phi);
-		
+
 		if (atLeastOneSelectedVariable)
 		{
-			Int* vec = (Int*)malloc(p*sizeof(Int));
-			mwSize vecSize = 0;
-			for (mwSize j=0; j<p; j++)
+			int* vec = (int*)malloc(p*sizeof(int));
+			int vecSize = 0;
+			for (int j=0; j<p; j++)
 			{
-				if (selectedVariables[j*m+0] != 0)
+				if (selectedVariables[mi(j,0,p,m)] != 0)
 					vec[vecSize++] = j;
 			}
 			
 			//A1
-			for (mwSize j=0; j<p; j++)
-				A1[j*(m+1)*L+0*L+lambdaIndex] = (j < vecSize ? vec[j]+1 : 0);
-			for (mwSize j=0; j<vecSize; j++)
+			for (int j=0; j<p; j++)
+				A1[ai(j,0,lambdaIndex,p,m+1,L)] = (j < vecSize ? vec[j]+1 : 0);
+			for (int j=0; j<vecSize; j++)
 			{
-				for (mwSize jj=1; jj<=m; jj++)
-					A1[j*(m+1)*L+jj*L+lambdaIndex] = selectedVariables[vec[j]*m+jj-1];
+				for (int jj=1; jj<=m; jj++)
+					A1[ai(j,jj,lambdaIndex,p,m+1,L)] = selectedVariables[mi(vec[j],jj-1,p,m)];
 			}
 			//A2
-			for (mwSize j=0; j<p; j++)
-				A2[j*(m+1)*L+0*L+lambdaIndex] = j+1;
-			for (mwSize j=0; j<p; j++)
+			for (int j=0; j<p; j++)
+				A2[ai(j,0,lambdaIndex,p,m+1,L)] = j+1;
+			for (int j=0; j<p; j++)
 			{
-				for (mwSize jj=1; jj<=m; jj++)
-					A2[j*(m+1)*L+jj*L+lambdaIndex] = discardedVariables[j*m+jj-1];
+				for (int jj=1; jj<=m; jj++)
+					A2[ai(j,jj,lambdaIndex,p,m+1,L)] = discardedVariables[mi(j,jj-1,p,m)];
 			}
 			//Rho
-			for (mwSize j=0; j<m; j++)
+			for (int j=0; j<m; j++)
 			{
-				for (mwSize jj=0; jj<m; jj++)
+				for (int jj=0; jj<m; jj++)
 				{
-					for (mwSize r=0; r<k; r++)
-						Rho[j*m*k*L+jj*k*L+r*L+lambdaIndex] = rho[j*m*k+jj*k+r];
+					for (int r=0; r<k; r++)
+						Rho[ai4(j,jj,r,lambdaIndex,m,m,k,L)] = rho[ai(j,jj,r,m,m,k)];
 				}
 			}
 			//Pi
-			for (mwSize r=0; r<k; r++)
-				Pi[r*L+lambdaIndex] = pi[r];
+			for (int r=0; r<k; r++)
+				Pi[mi(r,lambdaIndex,k,L)] = pi[r];
 			free(vec);
 		}
-		
+
 		free(selectedVariables);
 		free(discardedVariables);
 		free(rho);
diff --git a/src/sources/selectiontotale.h b/src/sources/selectiontotale.h
index 2d02da8..5145695 100644
--- a/src/sources/selectiontotale.h
+++ b/src/sources/selectiontotale.h
@@ -1,33 +1,31 @@
-#ifndef select_selectiontotale_H
-#define select_selectiontotale_H
-
-#include "ioutils.h"
+#ifndef valse_selectiontotale_H
+#define valse_selectiontotale_H
 
 // Main job on raw inputs (after transformation from mxArray)
 void selectiontotale(
-	// IN parameters 
-	const Real* phiInit,
-	const Real* rhoInit,
-	const Real* piInit,
-	const Real* gamInit,
-	Int mini,
-	Int maxi,
-	Real gamma,
-	const Real* glambda,
-	const Real* X,
-	const Real* Y,
-	Real seuil,
-	Real tau,
+	// IN parameters
+	const double* phiInit,
+	const double* rhoInit,
+	const double* piInit,
+	const double* gamInit,
+	int mini,
+	int maxi,
+	double gamma,
+	const double* glambda,
+	const double* X,
+	const double* Y,
+	double seuil,
+	double tau,
 	// OUT parameters
-	Int* A1,
-	Int* A2,
-	Real* Rho,
-	Real* Pi,
+	int* A1,
+	int* A2,
+	double* Rho,
+	double* Pi,
 	// additional size parameters
-	mwSize n,    
-	mwSize p,
-	mwSize m,
-	mwSize k,
-	mwSize L);
-		
+	int n,
+	int p,
+	int m,
+	int k,
+	int L);
+
 #endif
diff --git a/src/sources/utils.h b/src/sources/utils.h
new file mode 100644
index 0000000..0c5a8d8
--- /dev/null
+++ b/src/sources/utils.h
@@ -0,0 +1,52 @@
+#ifndef valse_utils_H
+#define valse_utils_H
+
+/*******************
+ * tune parallelism
+ *******************/
+
+// Number of OpenMP threads
+#define OMP_NUM_THREADS 8
+
+// CHUNK_SIZE = number of lambda values to be treated sequentially by a single core
+#define CHUNK_SIZE 1
+
+/*******************************
+ * Matrix and arrays indexation
+ *******************************/
+
+// Matrix Index ; TODO? ncol unused
+#define mi(i,j,nrow,ncol)\
+	j*nrow + i
+
+// Array Index ; TODO? d3 unused
+#define ai(i,j,k,d1,d2,d3)\
+	k*d1*d2 + j*d1 + i
+
+// Array4 Index ; TODO? ...
+#define ai4(i,j,k,m,d1,d2,d3,d4)\
+	m*d1*d2*d3 + k*d1*d2 + j*d1 + i
+
+// Array5 Index ; TODO? ...
+#define ai5(i,j,k,m,n,d1,d2,d3,d4,d5)\
+	n*d1*d2*d3*d4 + m*d1*d2*d3 + k*d1*d2 + j*d1 + i
+
+/*************************
+ * Array copy & "zeroing"
+ ************************/
+
+// Fill an array with zeros
+#define zeroArray(array, size)\
+{\
+	for (int u=0; u<size; u++)\
+		array[u] = 0;\
+}
+
+// Copy an 1D array
+#define copyArray(array, copy, size)\
+{\
+	for (int u=0; u<size; u++)\
+		copy[u] = array[u];\
+}
+
+#endif
diff --git a/src/sources/utils/io.h b/src/sources/utils/io.h
deleted file mode 100644
index 9aa5899..0000000
--- a/src/sources/utils/io.h
+++ /dev/null
@@ -1,26 +0,0 @@
-#ifndef select_ioutils_H
-#define select_ioutils_H
-
-// Fill an array with zeros
-#define zeroArray(array, size)\
-{\
-	for (int u=0; u<size; u++)\
-		array[u] = 0;\
-}
-
-// Copy an 1D array
-#define copyArray(array, copy, size)\
-{\
-	for (int u=0; u<size; u++)\
-		copy[u] = array[u];\
-}
-
-// Matrix Index ; TODO? ncol unused
-#define mi(i,j,nrow,ncol)\
-	j*nrow + i
-
-// Array Index ; TODO? d3 unused
-#define ai(i,j,k,d1,d2,d3)\
-	k*d1*d2 + j*d1 + i
-
-#endif
diff --git a/src/sources/utils/tune_parallelisms.h b/src/sources/utils/tune_parallelisms.h
deleted file mode 100644
index 33a5171..0000000
--- a/src/sources/utils/tune_parallelisms.h
+++ /dev/null
@@ -1,10 +0,0 @@
-#ifndef tune_parallelism_H
-#define tune_parallelism_H
-
-// Number of OpenMP threads
-#define OMP_NUM_THREADS 8
-
-// CHUNK_SIZE = number of lambda values to be treated sequentially by a single core
-#define CHUNK_SIZE 1
-
-#endif