1 context("jointDiag::ajd")
3 #auxiliary to test diagonality
4 .computeMuCheckDiag = function(X, Y, K, jd_method, β_ref)
7 #TODO: redundant code, same as computeMu() main method. Comments are stripped
9 M2_t <- array(dim=c(d,d,d))
12 ρ <- c(rep(0,i-1),1,rep(0,d-i))
13 M2_t[,,i] <- .T_I_I_w(M3,ρ)
15 jd <- jointDiag::ajd(M2_t, method=jd_method)
16 V <- if (jd_method=="uwedge") jd$B else solve(jd$A)
17 M2_t <- array(dim=c(d,d,K))
19 M2_t[,,i] <- .T_I_I_w(M3,V[,i])
20 #END of computeMu() code
22 max_error <- 1.0 #TODO: tune ?
23 invβ <- MASS::ginv(β_ref)
26 shouldBeDiag <- invβ %*% M2_t[,,i] %*% t(invβ)
28 mean( abs(shouldBeDiag[upper.tri(shouldBeDiag) | lower.tri(shouldBeDiag)]) ),
29 is_less_than(max_error) )
33 test_that("'jedi' and 'uwedge' joint-diagonalization methods return a correct matrix",
36 d_K <- list( c(2,2), c(5,3), c(20,13) )
38 for (dk_index in 1:length(d_K))
40 d <- d_K[[dk_index]][1]
41 K <- d_K[[dk_index]][2]
42 #NOTE: sometimes large errors if pr is not balanced enough (e.g. random);
43 # same note for β. However we could be more random than that...
44 β_ref <- rbind(diag(K),matrix(0,nrow=d-K,ncol=K))
45 io <- generateSampleIO(n, p=rep(1/K,K-1), β=β_ref, rep(0,K), link="logit")
46 .computeMuCheckDiag(io$X, io$Y, K, jd_method="uwedge", β_ref)
47 #TODO: some issues with jedi method (singular system)
48 #.computeMuCheckDiag(io$X, io$Y, K, jd_method="jedi", β_ref)