5 #' @param X matrix of covariates (of size n*p)
6 #' @param Y matrix of responses (of size n*m)
7 #' @param procedure among 'LassoMLE' or 'LassoRank'
8 #' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC'
9 #' @param gamma integer for the power in the penaly, by default = 1
10 #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
11 #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
12 #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
13 #' @param kmin integer, minimum number of clusters, by default = 2
14 #' @param kmax integer, maximum number of clusters, by default = 10
15 #' @param rank.min integer, minimum rank in the low rank procedure, by default = 1
16 #' @param rank.max integer, maximum rank in the low rank procedure, by default = 5
17 #' @param ncores_outer Number of cores for the outer loop on k
18 #' @param ncores_inner Number of cores for the inner loop on lambda
19 #' @param thresh real, threshold to say a variable is relevant, by default = 1e-8
20 #' @param compute_grid_lambda, TRUE to compute the grid, FALSE if known (in arguments)
21 #' @param grid_lambda, a vector with regularization parameters if known, by default 0
22 #' @param size_coll_mod (Maximum) size of a collection of models
23 #' @param fast TRUE to use compiled C code, FALSE for R code only
24 #' @param verbose TRUE to show some execution traces
26 #' @return a list with estimators of parameters
29 #' #TODO: a few examples
31 valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mini = 10,
32 maxi = 50, eps = 1e-04, kmin = 2, kmax = 3, rank.min = 1, rank.max = 5, ncores_outer = 1,
33 ncores_inner = 1, thresh = 1e-08, compute_grid_lambda = TRUE, grid_lambda = 0, size_coll_mod = 10, fast = TRUE, verbose = FALSE,
41 print("main loop: over all k and all lambda")
43 if (ncores_outer > 1) {
44 cl <- parallel::makeCluster(ncores_outer, outfile = "")
45 parallel::clusterExport(cl = cl, envir = environment(), varlist = c("X",
46 "Y", "procedure", "selecMod", "gamma", "mini", "maxi", "eps", "kmin",
47 "kmax", "rank.min", "rank.max", "ncores_outer", "ncores_inner", "thresh",
48 "size_coll_mod", "verbose", "p", "m"))
51 # Compute models with k components
52 computeModels <- function(k)
55 require("valse") #nodes start with an empty environment
58 print(paste("Parameters initialization for k =", k))
59 # smallEM initializes parameters by k-means and regression model in each
60 # component, doing this 20 times, and keeping the values maximizing the
61 # likelihood after 10 iterations of the EM algorithm.
62 P <- initSmallEM(k, X, Y, fast)
63 if (compute_grid_lambda == TRUE)
65 grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit,
66 X, Y, gamma, mini, maxi, eps, fast)
68 if (length(grid_lambda) > size_coll_mod)
69 grid_lambda <- grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)]
72 print("Compute relevant parameters")
73 # select variables according to each regularization parameter from the grid:
74 # S$selected corresponding to selected variables
75 S <- selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi,
76 gamma, grid_lambda, X, Y, thresh, eps, ncores_inner, fast)
78 if (procedure == "LassoMLE") {
80 print("run the procedure Lasso-MLE")
81 # compute parameter estimations, with the Maximum Likelihood Estimator,
82 # restricted on selected variables.
83 models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit,
84 P$gamInit, mini, maxi, gamma, X, Y, eps, S, ncores_inner, fast, verbose)
87 print("run the procedure Lasso-Rank")
88 # compute parameter estimations, with the Low Rank Estimator, restricted on
90 models <- constructionModelesLassoRank(S, k, mini, maxi, X, Y, eps, rank.min,
91 rank.max, ncores_inner, fast, verbose)
93 # warning! Some models are NULL after running selectVariables
94 models <- models[sapply(models, function(cell) !is.null(cell))]
98 # List (index k) of lists (index lambda) of models
100 if (ncores_outer > 1) {
101 parLapply(cl, kmin:kmax, computeModels)
103 lapply(kmin:kmax, computeModels)
105 if (ncores_outer > 1)
106 parallel::stopCluster(cl)
108 if (!requireNamespace("capushe", quietly = TRUE))
110 warning("'capushe' not available: returning all models")
114 # Get summary 'tableauRecap' from models
115 tableauRecap <- do.call(rbind, lapply(seq_along(models_list), function(i)
117 models <- models_list[[i]]
118 # For a collection of models (same k, several lambda):
119 LLH <- sapply(models, function(model) model$llh[1])
120 k <- length(models[[1]]$pi)
121 sumPen <- sapply(models, function(model) k * (dim(model$rho)[1] + sum(model$phi[,
123 data.frame(model = paste(i, ".", seq_along(models), sep = ""), pen = sumPen/n,
124 complexity = sumPen, contrast = -LLH)
126 tableauRecap <- tableauRecap[which(tableauRecap[, 4] != Inf), ]
131 modSel <- capushe::capushe(tableauRecap, n)
132 indModSel <- if (selecMod == "DDSE")
133 as.numeric(modSel@DDSE@model) else if (selecMod == "Djump")
134 as.numeric(modSel@Djump@model) else if (selecMod == "BIC")
135 modSel@BIC_capushe$model else if (selecMod == "AIC")
136 modSel@AIC_capushe$model
138 mod <- as.character(tableauRecap[indModSel, 1])
139 listMod <- as.integer(unlist(strsplit(mod, "[.]")))
140 modelSel <- models_list[[listMod[1]]][[listMod[2]]]
143 Gam <- matrix(0, ncol = length(modelSel$pi), nrow = n)
146 for (r in 1:length(modelSel$pi))
148 sqNorm2 <- sum((Y[i, ] %*% modelSel$rho[, , r] - X[i, ] %*% modelSel$phi[, , r])^2)
149 Gam[i, r] <- modelSel$pi[r] * exp(-0.5 * sqNorm2) * det(modelSel$rho[, , r])
152 Gam <- Gam/rowSums(Gam)
153 modelSel$affec <- apply(Gam, 1, which.max)
154 modelSel$proba <- Gam
155 modelSel$tableau <- tableauRecap
158 print(plot_valse(X, Y, modelSel, n))