1 # Cluster one full task (nb_curves / ntasks series); only step 1
2 clusteringTask = function(indices, getCoefs, K1, nb_series_per_chunk, ncores)
4 cl = parallel::makeCluster(ncores)
5 parallel::clusterExport(cl, varlist=c("getCoefs","K1"), envir=environment())
8 nb_workers = max( 1, floor( length(indices) / nb_series_per_chunk ) )
9 indices_workers = lapply( seq_len(nb_workers), function(i)
10 indices[(nb_series_per_chunk*(i-1)+1):(nb_series_per_chunk*i)] )
11 # Spread the remaining load among the workers
12 rem = length(indices) %% nb_series_per_chunk
15 index = rem%%nb_workers + 1
16 indices_workers[[index]] = c(indices_workers[[index]], tail(indices,rem))
19 indices = unlist( parallel::parLapply( cl, indices_workers, function(inds) {
20 require("epclust", quietly=TRUE)
21 inds[ computeClusters1(getCoefs(inds), K1) ]
23 if (length(indices) == K1)
26 parallel::stopCluster(cl)
30 # Apply the clustering algorithm (PAM) on a coeffs or distances matrix
31 computeClusters1 = function(coefs, K1)
32 cluster::pam(coefs, K1, diss=FALSE)$id.med
34 # Cluster a chunk of series inside one task (~max nb_series_per_chunk)
35 computeClusters2 = function(medoids, K2, getRefSeries, nb_series_per_chunk)
37 synchrones = computeSynchrones(medoids, getRefSeries, nb_series_per_chunk)
38 medoids[ cluster::pam(computeWerDists(synchrones), K2, diss=TRUE)$medoids , ]
41 # Compute the synchrones curves (sum of clusters elements) from a clustering result
42 computeSynchrones = function(medoids, getRefSeries, nb_series_per_chunk)
45 synchrones = matrix(0, nrow=K, ncol=ncol(medoids))
50 range = (index-1) + seq_len(nb_series_per_chunk)
51 ref_series = getRefSeries(range)
52 if (is.null(ref_series))
54 #get medoids indices for this chunk of series
55 for (i in seq_len(nrow(ref_series)))
57 j = which.min( rowSums( sweep(medoids, 2, ref_series[i,], '-')^2 ) )
58 synchrones[j,] = synchrones[j,] + ref_series[i,]
59 counts[j] = counts[j] + 1
61 index = index + nb_series_per_chunk
63 #NOTE: odds for some clusters to be empty? (when series already come from stage 2)
64 # ...maybe; but let's hope resulting K1' be still quite bigger than K2
65 synchrones = sweep(synchrones, 1, counts, '/')
66 synchrones[ sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,]))) , ]
69 # Compute the WER distance between the synchrones curves (in rows)
70 computeWerDists = function(curves)
72 if (!require("Rwave", quietly=TRUE))
73 stop("Unable to load Rwave library")
76 #TODO: automatic tune of all these parameters ? (for other users)
78 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves))
80 # 4 here represent 2^5 = 32 half-hours ~ 1 day
81 #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
82 scalevector <- 2^(4:(noctave * nvoice) / nvoice) * 2
83 #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
87 s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
88 totnoct = noctave + as.integer(s0log/nvoice) + 1
90 # (normalized) observations node with CWT
91 Xcwt4 <- lapply(seq_len(n), function(i) {
92 ts <- scale(ts(curves[i,]), center=TRUE, scale=scaled)
93 totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
94 ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
96 sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
97 sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*')
98 sqres / max(Mod(sqres))
101 Xwer_dist <- matrix(0., n, n)
102 fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!)
107 #TODO: later, compute CWT here (because not enough storage space for 200k series)
108 # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C
109 num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
110 WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE)
111 WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
112 wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) )
113 Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2))
114 Xwer_dist[j,i] <- Xwer_dist[i,j]
117 diag(Xwer_dist) <- numeric(n)