1 #' @title plot measured / predicted
3 #' @description Plot measured curve (in black) and predicted curve (in red)
5 #' @param data Object return by \code{getData}
6 #' @param pred Object as returned by \code{getForecast}
7 #' @param index Index in forecasts
10 plotPredReal <- function(data, pred, index)
12 horizon = length(pred$getSerie(1))
13 par(mar=c(4.7,5,1,1), cex.axis=2, cex.lab=2, lwd=2)
14 measure = data$getSerie(pred$getIndexInData(index)+1)[1:horizon]
15 yrange = range( pred$getSerie(index), measure )
16 plot(measure, type="l", ylim=yrange, lwd=3, xlab="Temps (en heures)", ylab="PM10")
18 plot(pred$getSerie(index), type="l", col="#0000FF", ylim=yrange, lwd=3, xlab="", ylab="")
21 #' @title Plot filaments
23 #' @description Plot similar days in the past + "past tomorrow", as black as distances are small
25 #' @param data Object as returned by \code{getData}
26 #' @param index Index in data
27 #' @param limit Number of neighbors to consider
30 plotFilaments <- function(data, index, limit=60)
32 index = dateIndexToInteger(index, data)
33 ref_serie = data$getCenteredSerie(index)
34 if (any(is.na(ref_serie)))
35 stop("plotFilaments requires a serie without NAs")
37 first_day = ifelse(length(data$getCenteredSerie(1)<L), 2, 1)
38 distances = sapply(first_day:(index-1), function(i) {
39 sqrt( sum( (ref_serie - data$getCenteredSerie(i))^2 ) / L )
41 # HACK to suppress NA effect while keeping indexation
42 distances[is.na(distances)] = max(distances,na.rm=TRUE) + 1
43 indices = sort(distances, index.return=TRUE)$ix[1:min(limit,index-first_day)]
44 yrange = range( ref_serie, sapply( indices, function(i) {
45 index = i - first_day + 1
46 serie = c(data$getCenteredSerie(index), data$getCenteredSerie(index+1))
47 if (!all(is.na(serie)))
48 return ( range(serie, na.rm=TRUE) )
51 grays = gray.colors(20, 0.1, 0.9) #TODO: 20 == magic number
53 grays[ floor( 20.5 * distances[indices] / (1+max(distances[indices])) ) ], "#FF0000")
54 par(mar=c(4.7,5,1,1), cex.axis=2, cex.lab=2, lwd=2)
55 for (i in seq_len(length(indices)+1))
57 ind = ifelse(i<=length(indices), indices[i] - first_day + 1, index)
58 plot(c(data$getCenteredSerie(ind),data$getCenteredSerie(ind+1)),
59 ylim=yrange, type="l", col=colors[i],
60 xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10 centré",""))
61 if (i <= length(indices))
66 #' @title Plot similarities
68 #' @description Plot histogram of similarities (weights)
70 #' @param pred Object as returned by \code{getForecast}
71 #' @param index Index in forecasts (not in data)
74 plotSimils <- function(pred, index)
76 weights = pred$getParams(index)$weights
78 stop("plotSimils only works on 'Neighbors' forecasts")
80 hist(pred$getParams(index)$weights, nclass=20, xlab="Weight", ylab="Frequency")
85 #' @description Draw error graphs, potentially from several runs of \code{getForecast}
87 #' @param err Error as returned by \code{getError}
88 #' @param cols Colors for each error (default: 1,2,3,...)
90 #' @seealso \code{\link{plotPredReal}}, \code{\link{plotFilaments}}, \code{\link{plotSimils}}
91 #' \code{\link{plotFbox}}
94 plotError <- function(err, cols=seq_along(err))
96 if (!is.null(err$abs))
98 par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=2, cex.lab=2, lwd=2)
100 yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$day ) ), na.rm=TRUE )
101 for (i in seq_len(L))
103 plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""),
104 ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i])
108 yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$indices ) ), na.rm=TRUE )
109 for (i in seq_len(L))
111 plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""),
112 ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i])
116 yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$day ) ), na.rm=TRUE )
117 for (i in seq_len(L))
119 plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""),
120 ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i])
124 yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$indices ) ), na.rm=TRUE )
125 for (i in seq_len(L))
127 plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""),
128 ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i])
134 #' @title Functional boxplot
136 #' @description Draw the functional boxplot on the left, and bivariate plot on the right
138 #' @param data Object return by \code{getData}
139 #' @param fiter Optional filter: return TRUE on indices to process
142 plotFbox <- function(data, filter=function(index) TRUE)
144 if (!requireNamespace("rainbow", quietly=TRUE))
145 stop("Functional boxplot requires the rainbow package")
148 end_index = data$getSize()
149 if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2)))
151 # Shifted start (7am, or 1pm, or...)
153 end_index = data$getSize() - 1
156 series_matrix = sapply(start_index:end_index, function(index) {
157 as.matrix(data$getSerie(index))
159 # Remove NAs. + filter TODO: merge with previous step: only one pass required...
160 nas_indices = seq_len(ncol(series_matrix))[ sapply( 1:ncol(series_matrix),
161 function(index) ( !filter(index) || any(is.na(series_matrix[,index])) ) ) ]
162 series_matrix = series_matrix[,-nas_indices]
164 series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
165 par(mfrow=c(1,2), mar=c(4.7,5,1,1), cex.axis=2, cex.lab=2)
166 rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10",
167 plotlegend=FALSE, lwd=2)
168 rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE)