Commit | Line | Data |
---|---|---|
f7244815 | 1 | EMGLLF_R = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau) |
ef67d338 | 2 | { |
83ed2c0a BG |
3 | #matrix dimensions |
4 | n = dim(X)[1] | |
c2028869 BG |
5 | p = dim(phiInit)[1] |
6 | m = dim(phiInit)[2] | |
7 | k = dim(phiInit)[3] | |
83ed2c0a BG |
8 | |
9 | #init outputs | |
10 | phi = phiInit | |
11 | rho = rhoInit | |
ef67d338 | 12 | pi = piInit |
83ed2c0a BG |
13 | LLF = rep(0, maxi) |
14 | S = array(0, dim=c(p,m,k)) | |
15 | ||
83ed2c0a BG |
16 | gam = gamInit |
17 | Gram2 = array(0, dim=c(p,p,k)) | |
18 | ps2 = array(0, dim=c(p,m,k)) | |
19 | b = rep(0, k) | |
20 | pen = matrix(0, maxi, k) | |
21 | X2 = array(0, dim=c(n,p,k)) | |
6e22eb7b | 22 | Y2 = array(0, dim=c(n,m,k)) |
83ed2c0a BG |
23 | dist = 0 |
24 | dist2 = 0 | |
25 | ite = 1 | |
ef67d338 | 26 | pi2 = rep(0, k) |
83ed2c0a BG |
27 | ps = matrix(0, m,k) |
28 | nY2 = matrix(0, m,k) | |
29 | ps1 = array(0, dim=c(n,m,k)) | |
83ed2c0a BG |
30 | Gam = matrix(0, n,k) |
31 | EPS = 1E-15 | |
32 | ||
f7244815 | 33 | while(ite <= mini || (ite <= maxi && (dist >= tau || dist2 >= sqrt(tau)))) |
ef67d338 | 34 | { |
83ed2c0a BG |
35 | Phi = phi |
36 | Rho = rho | |
ef67d338 BA |
37 | Pi = pi |
38 | ||
83ed2c0a | 39 | #calcul associé à Y et X |
ef67d338 BA |
40 | for(r in 1:k) |
41 | { | |
42 | for (mm in 1:m) | |
43 | Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm] | |
44 | for (i in 1:n) | |
45 | X2[i,,r] = sqrt(gam[i,r]) * X[i,] | |
46 | for (mm in 1:m) | |
83ed2c0a | 47 | ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r]) |
ef67d338 BA |
48 | for (j in 1:p) |
49 | { | |
50 | for (s in 1:p) | |
6e22eb7b | 51 | Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r]) |
83ed2c0a BG |
52 | } |
53 | } | |
54 | ||
55 | ########## | |
56 | #Etape M # | |
57 | ########## | |
58 | ||
59 | #pour pi | |
f227455a | 60 | for (r in 1:k){ |
61 | b[r] = sum(abs(phi[,,r]))} | |
87fea89a | 62 | gam2 = colSums(gam) |
ef67d338 | 63 | a = sum(gam %*% log(pi)) |
83ed2c0a BG |
64 | |
65 | #tant que les props sont negatives | |
66 | kk = 0 | |
67 | pi2AllPositive = FALSE | |
ef67d338 BA |
68 | while (!pi2AllPositive) |
69 | { | |
70 | pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi) | |
71 | pi2AllPositive = all(pi2 >= 0) | |
83ed2c0a BG |
72 | kk = kk+1 |
73 | } | |
017063cd | 74 | |
ef67d338 BA |
75 | #t[m] la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante |
76 | while( kk < 1000 && -a/n + lambda * sum(pi^gamma * b) < | |
77 | -sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b) ) | |
78 | { | |
79 | pi2 = pi + 0.1^kk * (1/n*gam2 - pi) | |
80 | kk = kk + 1 | |
83ed2c0a | 81 | } |
ef67d338 BA |
82 | t = 0.1^kk |
83 | pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi)) | |
83ed2c0a BG |
84 | |
85 | #Pour phi et rho | |
ef67d338 BA |
86 | for (r in 1:k) |
87 | { | |
88 | for (mm in 1:m) | |
89 | { | |
90 | for (i in 1:n) | |
91 | { | |
92 | ps1[i,mm,r] = Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r]) | |
83ed2c0a | 93 | } |
b45ba1b0 | 94 | ps[mm,r] = sum(ps1[,mm,r]) |
f227455a | 95 | nY2[mm,r] = sum(Y2[,mm,r]^2) |
ef67d338 | 96 | rho[mm,mm,r] = (ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*gam2[r])) / (2*nY2[mm,r]) |
83ed2c0a BG |
97 | } |
98 | } | |
ef67d338 BA |
99 | for (r in 1:k) |
100 | { | |
101 | for (j in 1:p) | |
102 | { | |
103 | for (mm in 1:m) | |
104 | { | |
21f6928a | 105 | S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j, setdiff(1:p,j),r]) |
ef67d338 | 106 | if (abs(S[j,mm,r]) <= n*lambda*(pi[r]^gamma)) |
83ed2c0a | 107 | phi[j,mm,r]=0 |
ef67d338 BA |
108 | else if(S[j,mm,r] > n*lambda*(pi[r]^gamma)) |
109 | phi[j,mm,r] = (n*lambda*(pi[r]^gamma)-S[j,mm,r]) / Gram2[j,j,r] | |
110 | else | |
111 | phi[j,mm,r] = -(n*lambda*(pi[r]^gamma)+S[j,mm,r]) / Gram2[j,j,r] | |
83ed2c0a BG |
112 | } |
113 | } | |
114 | } | |
ef67d338 | 115 | |
83ed2c0a BG |
116 | ########## |
117 | #Etape E # | |
118 | ########## | |
119 | sumLogLLF2 = 0 | |
ef67d338 BA |
120 | for (i in 1:n) |
121 | { | |
122 | #precompute sq norms to numerically adjust their values | |
123 | sqNorm2 = rep(0,k) | |
f227455a | 124 | for (r in 1:k){ |
125 | sqNorm2[r] = sum( (Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2 )} | |
ef67d338 | 126 | |
83ed2c0a BG |
127 | #compute Gam(:,:) using shift determined above |
128 | sumLLF1 = 0.0; | |
ef67d338 BA |
129 | for (r in 1:k) |
130 | { | |
923a335e | 131 | Gam[i,r] = pi[r] * exp(-0.5*sqNorm2[r]) * det(rho[,,r]) #FIXME: still issues here ?!?! |
ef67d338 | 132 | sumLLF1 = sumLLF1 + Gam[i,r] / (2*base::pi)^(m/2) |
83ed2c0a BG |
133 | } |
134 | sumLogLLF2 = sumLogLLF2 + log(sumLLF1) | |
135 | sumGamI = sum(Gam[i,]) | |
136 | if(sumGamI > EPS) | |
137 | gam[i,] = Gam[i,] / sumGamI | |
138 | else | |
ef67d338 | 139 | gam[i,] = rep(0,k) |
83ed2c0a | 140 | } |
ef67d338 BA |
141 | |
142 | sumPen = sum(pi^gamma * b) | |
143 | LLF[ite] = -sumLogLLF2/n + lambda*sumPen | |
144 | ||
145 | dist = ifelse( ite == 1, LLF[ite], (LLF[ite]-LLF[ite-1]) / (1+abs(LLF[ite])) ) | |
146 | ||
147 | Dist1 = max( (abs(phi-Phi)) / (1+abs(phi)) ) | |
148 | Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) ) | |
149 | Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)) ) | |
150 | dist2 = max(Dist1,Dist2,Dist3) | |
151 | ||
152 | ite = ite+1 | |
83ed2c0a | 153 | } |
f227455a | 154 | |
155 | affec = apply(gam, 1,which.max) | |
156 | return(list("phi"=phi, "rho"=rho, "pi"=pi, "LLF"=LLF, "S"=S, "affec" = affec )) | |
87fea89a | 157 | } |