Commit | Line | Data |
---|---|---|
83ed2c0a BG |
1 | EMGLLF = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau){ |
2 | #matrix dimensions | |
3 | n = dim(X)[1] | |
c2028869 BG |
4 | p = dim(phiInit)[1] |
5 | m = dim(phiInit)[2] | |
6 | k = dim(phiInit)[3] | |
83ed2c0a BG |
7 | |
8 | #init outputs | |
9 | phi = phiInit | |
10 | rho = rhoInit | |
11 | Pi = piInit | |
12 | LLF = rep(0, maxi) | |
13 | S = array(0, dim=c(p,m,k)) | |
14 | ||
15 | ||
16 | gam = gamInit | |
17 | Gram2 = array(0, dim=c(p,p,k)) | |
18 | ps2 = array(0, dim=c(p,m,k)) | |
19 | b = rep(0, k) | |
20 | pen = matrix(0, maxi, k) | |
21 | X2 = array(0, dim=c(n,p,k)) | |
22 | Y2 = array(0, dim=c(p,m,k)) | |
23 | dist = 0 | |
24 | dist2 = 0 | |
25 | ite = 1 | |
26 | Pi2 = rep(0, k) | |
27 | ps = matrix(0, m,k) | |
28 | nY2 = matrix(0, m,k) | |
29 | ps1 = array(0, dim=c(n,m,k)) | |
30 | nY21 = array(0, dim=c(n,m,k)) | |
31 | Gam = matrix(0, n,k) | |
32 | EPS = 1E-15 | |
33 | ||
34 | while(ite <= mini || (ite<= maxi && (dist>= tau || dist2 >= sqrt(tau)))){ | |
35 | Phi = phi | |
36 | Rho = rho | |
37 | PI = Pi | |
38 | #calcul associé à Y et X | |
39 | for(r in 1:k){ | |
40 | for(mm in 1:m){ | |
41 | Y2[,mm,r] = sqrt(gam[,r]) .* Y[,mm] | |
42 | } | |
43 | for(i in 1:n){ | |
44 | X2[i,,r] = X[i,] .* sqrt(gam[i,r]) | |
45 | } | |
46 | for(mm in 1:m){ | |
47 | ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r]) | |
48 | } | |
49 | for(j in 1:p){ | |
50 | for(s in 1:p){ | |
51 | Gram2[j,s,r] = tcrossprod(X2[,j,r], X2[,s,r]) | |
52 | } | |
53 | } | |
54 | } | |
55 | ||
56 | ########## | |
57 | #Etape M # | |
58 | ########## | |
59 | ||
60 | #pour pi | |
61 | for(r in 1:k){ | |
62 | b[r] = sum(sum(abs(phi[,,r]))) | |
63 | } | |
64 | gam2 = sum(gam[1,]) #BIG DOUTE | |
65 | a = sum(gam*t(log(Pi))) | |
66 | ||
67 | #tant que les props sont negatives | |
68 | kk = 0 | |
69 | pi2AllPositive = FALSE | |
70 | while(pi2AllPositive == FALSE){ | |
c2028869 | 71 | Pi2 = Pi + 0.1^kk * ((1/n)*gam2 - Pi) |
83ed2c0a BG |
72 | pi2AllPositive = TRUE |
73 | for(r in 1:k){ | |
c2028869 | 74 | if(Pi2[r] < 0){ |
83ed2c0a BG |
75 | pi2AllPositive = false; |
76 | break | |
77 | } | |
78 | } | |
79 | kk = kk+1 | |
80 | } | |
81 | ||
82 | #t[m]la plus grande valeur dans la grille O.1^k tel que ce soit | |
83 | #décroissante ou constante | |
c2028869 BG |
84 | while((-1/n*a+lambda*((Pi.^gamma)*b))<(-1/n*gam2*t(log(Pi2))+lambda.*(Pi2.^gamma)*b) && kk<1000){ |
85 | Pi2 = Pi+0.1^kk*(1/n*gam2-Pi) | |
83ed2c0a BG |
86 | kk = kk+1 |
87 | } | |
88 | t = 0.1^(kk) | |
c2028869 | 89 | Pi = (Pi+t*(Pi2-Pi)) / sum(Pi+t*(Pi2-Pi)) |
83ed2c0a BG |
90 | |
91 | #Pour phi et rho | |
92 | for(r in 1:k){ | |
93 | for(mm in 1:m){ | |
94 | for(i in 1:n){ | |
95 | ps1[i,mm,r] = Y2[i,mm,r] * dot(X2(i,:,r), phi(:,mm,r)) | |
96 | nY21[i,mm,r] = (Y2[i,mm,r])^2 | |
97 | } | |
98 | ps[mm,r] = sum(ps1(:,mm,r)); | |
99 | nY2[mm,r] = sum(nY21(:,mm,r)); | |
100 | rho[mm,mm,r] = ((ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*(gam2[r])))/(2*nY2[mm,r])) | |
101 | } | |
102 | } | |
103 | for(r in 1:k){ | |
104 | for(j in 1:p){ | |
105 | for(mm in 1:m){ | |
106 | S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + dot(phi[1:j-1,mm,r],Gram2[j,1:j-1,r]) + dot(phi[j+1:p,mm,r],Gram2[j,j+1:p,r]) | |
c2028869 | 107 | if(abs(S(j,mm,r)) <= n*lambda*(Pi[r]^gamma)){ |
83ed2c0a | 108 | phi[j,mm,r]=0 |
c2028869 BG |
109 | }else{ |
110 | if(S[j,mm,r]> n*lambda*(Pi[r]^gamma)){ | |
83ed2c0a | 111 | phi[j,mm,r] = (n*lambda*(Pi[r]^gamma)-S[j,mm,r])/Gram2[j,j,r] |
c2028869 BG |
112 | }else{ |
113 | phi[j,mm,r] = -(n*lambda*(Pi[r]^gamma)+S[j,mm,r])/Gram2[j,j,r] | |
114 | } | |
83ed2c0a BG |
115 | } |
116 | } | |
117 | } | |
118 | } | |
119 | ||
120 | ########## | |
121 | #Etape E # | |
122 | ########## | |
123 | sumLogLLF2 = 0 | |
124 | for(i in 1:n){ | |
125 | #precompute dot products to numerically adjust their values | |
126 | dotProducts = rep(0,k) | |
127 | for(r in 1:k){ | |
128 | dotProducts[r] = tcrossprod(Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r]) | |
129 | } | |
130 | shift = 0.5*min(dotProducts) | |
131 | ||
132 | #compute Gam(:,:) using shift determined above | |
133 | sumLLF1 = 0.0; | |
134 | for(r in 1:k){ | |
135 | Gam[i,r] = Pi[r]*det(rho[,,r])*exp(-0.5*dotProducts[r] + shift) | |
136 | sumLLF1 = sumLLF1 + Gam[i,r]/(2*pi)^(m/2) | |
137 | } | |
138 | sumLogLLF2 = sumLogLLF2 + log(sumLLF1) | |
139 | sumGamI = sum(Gam[i,]) | |
140 | if(sumGamI > EPS) | |
141 | gam[i,] = Gam[i,] / sumGamI | |
142 | else | |
143 | gam[i,] = rep(0,k) | |
144 | } | |
145 | ||
146 | ||
147 | sumPen = 0 | |
148 | for(r in 1:k){ | |
149 | sumPen = sumPen + Pi[r].^gamma^b[r] | |
150 | } | |
151 | LLF[ite] = -(1/n)*sumLogLLF2 + lambda*sumPen | |
152 | ||
153 | if(ite == 1) | |
154 | dist = LLF[ite] | |
155 | else | |
156 | dist = (LLF[ite]-LLF[ite-1])/(1+abs(LLF[ite])) | |
157 | ||
158 | Dist1=max(max(max((abs(phi-Phi))./(1+abs(phi))))) | |
159 | Dist2=max(max(max((abs(rho-Rho))./(1+abs(rho))))) | |
160 | Dist3=max(max((abs(Pi-PI))./(1+abs(PI)))) | |
161 | dist2=max([Dist1,Dist2,Dist3]) | |
162 | ||
163 | ite=ite+1 | |
164 | } | |
165 | ||
166 | Pi = transpose(Pi) | |
167 | return(list(phi=phi, rho=rho, Pi=Pi, LLF=LLF, S=S)) | |
168 | } |