Commit | Line | Data |
---|---|---|
3453829e BA |
1 | #include <stdlib.h> |
2 | #include <gsl/gsl_linalg.h> | |
3 | #include "utils.h" | |
4 | ||
5 | // Compute pseudo-inverse of a square matrix | |
6 | static Real* pinv(const Real* matrix, int dim) | |
7 | { | |
8 | gsl_matrix* U = gsl_matrix_alloc(dim,dim); | |
9 | gsl_matrix* V = gsl_matrix_alloc(dim,dim); | |
10 | gsl_vector* S = gsl_vector_alloc(dim); | |
11 | gsl_vector* work = gsl_vector_alloc(dim); | |
12 | Real EPS = 1e-10; //threshold for singular value "== 0" | |
13 | ||
14 | //copy matrix into U | |
15 | copyArray(matrix, U->data, dim*dim); | |
16 | ||
17 | //U,S,V = SVD of matrix | |
18 | gsl_linalg_SV_decomp(U, V, S, work); | |
19 | gsl_vector_free(work); | |
20 | ||
21 | // Obtain pseudo-inverse by V*S^{-1}*t(U) | |
22 | Real* inverse = (Real*)malloc(dim*dim*sizeof(Real)); | |
23 | for (int i=0; i<dim; i++) | |
24 | { | |
25 | for (int ii=0; ii<dim; ii++) | |
26 | { | |
27 | Real dotProduct = 0.0; | |
28 | for (int j=0; j<dim; j++) | |
29 | dotProduct += V->data[i*dim+j] * (S->data[j] > EPS ? 1.0/S->data[j] : 0.0) * U->data[ii*dim+j]; | |
30 | inverse[i*dim+ii] = dotProduct; | |
31 | } | |
32 | } | |
33 | ||
34 | gsl_matrix_free(U); | |
35 | gsl_matrix_free(V); | |
36 | gsl_vector_free(S); | |
37 | return inverse; | |
38 | } | |
39 | ||
40 | // TODO: comment EMGrank purpose | |
41 | void EMGrank_core( | |
42 | // IN parameters | |
43 | const Real* Pi, // parametre de proportion | |
44 | const Real* Rho, // parametre initial de variance renormalisé | |
45 | int mini, // nombre minimal d'itérations dans l'algorithme EM | |
46 | int maxi, // nombre maximal d'itérations dans l'algorithme EM | |
47 | const Real* X, // régresseurs | |
48 | const Real* Y, // réponse | |
49 | Real tau, // seuil pour accepter la convergence | |
50 | const int* rank, // vecteur des rangs possibles | |
51 | // OUT parameters | |
52 | Real* phi, // parametre de moyenne renormalisé, calculé par l'EM | |
53 | Real* LLF, // log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres | |
54 | // additional size parameters | |
55 | int n, // taille de l'echantillon | |
56 | int p, // nombre de covariables | |
57 | int m, // taille de Y (multivarié) | |
58 | int k) // nombre de composantes | |
59 | { | |
60 | // Allocations, initializations | |
61 | Real* Phi = (Real*)calloc(p*m*k,sizeof(Real)); | |
62 | Real* hatBetaR = (Real*)malloc(p*m*sizeof(Real)); | |
63 | int signum; | |
64 | Real invN = 1.0/n; | |
65 | int deltaPhiBufferSize = 20; | |
66 | Real* deltaPhi = (Real*)malloc(deltaPhiBufferSize*sizeof(Real)); | |
67 | int ite = 0; | |
68 | Real sumDeltaPhi = 0.0; | |
69 | Real* YiRhoR = (Real*)malloc(m*sizeof(Real)); | |
70 | Real* XiPhiR = (Real*)malloc(m*sizeof(Real)); | |
71 | Real* Xr = (Real*)malloc(n*p*sizeof(Real)); | |
72 | Real* Yr = (Real*)malloc(n*m*sizeof(Real)); | |
73 | Real* tXrXr = (Real*)malloc(p*p*sizeof(Real)); | |
74 | Real* tXrYr = (Real*)malloc(p*m*sizeof(Real)); | |
75 | gsl_matrix* matrixM = gsl_matrix_alloc(p, m); | |
76 | gsl_matrix* matrixE = gsl_matrix_alloc(m, m); | |
77 | gsl_permutation* permutation = gsl_permutation_alloc(m); | |
78 | gsl_matrix* V = gsl_matrix_alloc(m,m); | |
79 | gsl_vector* S = gsl_vector_alloc(m); | |
80 | gsl_vector* work = gsl_vector_alloc(m); | |
81 | ||
82 | //Initialize class memberships (all elements in class 0; TODO: randomize ?) | |
83 | int* Z = (int*)calloc(n, sizeof(int)); | |
84 | ||
85 | //Initialize phi to zero, because some M loops might exit before phi affectation | |
86 | zeroArray(phi, p*m*k); | |
87 | ||
88 | while (ite<mini || (ite<maxi && sumDeltaPhi>tau)) | |
89 | { | |
90 | ///////////// | |
91 | // Etape M // | |
92 | ///////////// | |
93 | ||
94 | //M step: Mise à jour de Beta (et donc phi) | |
95 | for (int r=0; r<k; r++) | |
96 | { | |
97 | //Compute Xr = X(Z==r,:) and Yr = Y(Z==r,:) | |
98 | int cardClustR=0; | |
99 | for (int i=0; i<n; i++) | |
100 | { | |
101 | if (Z[i] == r) | |
102 | { | |
103 | for (int j=0; j<p; j++) | |
104 | Xr[mi(cardClustR,j,n,p)] = X[mi(i,j,n,p)]; | |
105 | for (int j=0; j<m; j++) | |
106 | Yr[mi(cardClustR,j,n,m)] = Y[mi(i,j,n,m)]; | |
107 | cardClustR++; | |
108 | } | |
109 | } | |
110 | if (cardClustR == 0) | |
111 | continue; | |
112 | ||
113 | //Compute tXrXr = t(Xr) * Xr | |
114 | for (int j=0; j<p; j++) | |
115 | { | |
116 | for (int jj=0; jj<p; jj++) | |
117 | { | |
118 | Real dotProduct = 0.0; | |
119 | for (int u=0; u<cardClustR; u++) | |
120 | dotProduct += Xr[mi(u,j,n,p)] * Xr[mi(u,jj,n,p)]; | |
121 | tXrXr[mi(j,jj,p,p)] = dotProduct; | |
122 | } | |
123 | } | |
124 | ||
125 | //Get pseudo inverse = (t(Xr)*Xr)^{-1} | |
126 | Real* invTXrXr = pinv(tXrXr, p); | |
127 | ||
128 | // Compute tXrYr = t(Xr) * Yr | |
129 | for (int j=0; j<p; j++) | |
130 | { | |
131 | for (int jj=0; jj<m; jj++) | |
132 | { | |
133 | Real dotProduct = 0.0; | |
134 | for (int u=0; u<cardClustR; u++) | |
135 | dotProduct += Xr[mi(u,j,n,p)] * Yr[mi(u,jj,n,m)]; | |
136 | tXrYr[mi(j,jj,p,m)] = dotProduct; | |
137 | } | |
138 | } | |
139 | ||
140 | //Fill matrixM with inverse * tXrYr = (t(Xr)*Xr)^{-1} * t(Xr) * Yr | |
141 | for (int j=0; j<p; j++) | |
142 | { | |
143 | for (int jj=0; jj<m; jj++) | |
144 | { | |
145 | Real dotProduct = 0.0; | |
146 | for (int u=0; u<p; u++) | |
147 | dotProduct += invTXrXr[mi(j,u,p,p)] * tXrYr[mi(u,jj,p,m)]; | |
148 | matrixM->data[j*m+jj] = dotProduct; | |
149 | } | |
150 | } | |
151 | free(invTXrXr); | |
152 | ||
153 | //U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr | |
154 | gsl_linalg_SV_decomp(matrixM, V, S, work); | |
155 | ||
156 | //Set m-rank(r) singular values to zero, and recompose | |
157 | //best rank(r) approximation of the initial product | |
158 | for (int j=rank[r]; j<m; j++) | |
159 | S->data[j] = 0.0; | |
160 | ||
161 | //[intermediate step] Compute hatBetaR = U * S * t(V) | |
162 | double* U = matrixM->data; //GSL require double precision | |
163 | for (int j=0; j<p; j++) | |
164 | { | |
165 | for (int jj=0; jj<m; jj++) | |
166 | { | |
167 | Real dotProduct = 0.0; | |
168 | for (int u=0; u<m; u++) | |
169 | dotProduct += U[j*m+u] * S->data[u] * V->data[jj*m+u]; | |
170 | hatBetaR[mi(j,jj,p,m)] = dotProduct; | |
171 | } | |
172 | } | |
173 | ||
174 | //Compute phi(:,:,r) = hatBetaR * Rho(:,:,r) | |
175 | for (int j=0; j<p; j++) | |
176 | { | |
177 | for (int jj=0; jj<m; jj++) | |
178 | { | |
179 | Real dotProduct=0.0; | |
180 | for (int u=0; u<m; u++) | |
181 | dotProduct += hatBetaR[mi(j,u,p,m)] * Rho[ai(u,jj,r,m,m,k)]; | |
182 | phi[ai(j,jj,r,p,m,k)] = dotProduct; | |
183 | } | |
184 | } | |
185 | } | |
186 | ||
187 | ///////////// | |
188 | // Etape E // | |
189 | ///////////// | |
190 | ||
191 | Real sumLogLLF2 = 0.0; | |
192 | for (int i=0; i<n; i++) | |
193 | { | |
194 | Real sumLLF1 = 0.0; | |
195 | Real maxLogGamIR = -INFINITY; | |
196 | for (int r=0; r<k; r++) | |
197 | { | |
198 | //Compute | |
199 | //Gam(i,r) = Pi(r) * det(Rho(:,:,r)) * exp( -1/2 * (Y(i,:)*Rho(:,:,r) - X(i,:)... | |
200 | //*phi(:,:,r)) * transpose( Y(i,:)*Rho(:,:,r) - X(i,:)*phi(:,:,r) ) ); | |
201 | //split in several sub-steps | |
202 | ||
203 | //compute det(Rho(:,:,r)) [TODO: avoid re-computations] | |
204 | for (int j=0; j<m; j++) | |
205 | { | |
206 | for (int jj=0; jj<m; jj++) | |
207 | matrixE->data[j*m+jj] = Rho[ai(j,jj,r,m,m,k)]; | |
208 | } | |
209 | gsl_linalg_LU_decomp(matrixE, permutation, &signum); | |
210 | Real detRhoR = gsl_linalg_LU_det(matrixE, signum); | |
211 | ||
212 | //compute Y(i,:)*Rho(:,:,r) | |
213 | for (int j=0; j<m; j++) | |
214 | { | |
215 | YiRhoR[j] = 0.0; | |
216 | for (int u=0; u<m; u++) | |
217 | YiRhoR[j] += Y[mi(i,u,n,m)] * Rho[ai(u,j,r,m,m,k)]; | |
218 | } | |
219 | ||
220 | //compute X(i,:)*phi(:,:,r) | |
221 | for (int j=0; j<m; j++) | |
222 | { | |
223 | XiPhiR[j] = 0.0; | |
224 | for (int u=0; u<p; u++) | |
225 | XiPhiR[j] += X[mi(i,u,n,p)] * phi[ai(u,j,r,p,m,k)]; | |
226 | } | |
227 | ||
228 | //compute dotProduct < Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) . Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) > | |
229 | Real dotProduct = 0.0; | |
230 | for (int u=0; u<m; u++) | |
231 | dotProduct += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]); | |
232 | Real logGamIR = log(Pi[r]) + log(detRhoR) - 0.5*dotProduct; | |
233 | ||
234 | //Z(i) = index of max (gam(i,:)) | |
235 | if (logGamIR > maxLogGamIR) | |
236 | { | |
237 | Z[i] = r; | |
238 | maxLogGamIR = logGamIR; | |
239 | } | |
240 | sumLLF1 += exp(logGamIR) / pow(2*M_PI,m/2.0); | |
241 | } | |
242 | ||
243 | sumLogLLF2 += log(sumLLF1); | |
244 | } | |
245 | ||
246 | // Assign output variable LLF | |
247 | *LLF = -invN * sumLogLLF2; | |
248 | ||
249 | //newDeltaPhi = max(max((abs(phi-Phi))./(1+abs(phi)))); | |
250 | Real newDeltaPhi = 0.0; | |
251 | for (int j=0; j<p; j++) | |
252 | { | |
253 | for (int jj=0; jj<m; jj++) | |
254 | { | |
255 | for (int r=0; r<k; r++) | |
256 | { | |
257 | Real tmpDist = fabs(phi[ai(j,jj,r,p,m,k)]-Phi[ai(j,jj,r,p,m,k)]) | |
258 | / (1.0+fabs(phi[ai(j,jj,r,p,m,k)])); | |
259 | if (tmpDist > newDeltaPhi) | |
260 | newDeltaPhi = tmpDist; | |
261 | } | |
262 | } | |
263 | } | |
264 | ||
265 | //update distance parameter to check algorithm convergence (delta(phi, Phi)) | |
266 | //TODO: deltaPhi should be a linked list for perf. | |
267 | if (ite < deltaPhiBufferSize) | |
268 | deltaPhi[ite] = newDeltaPhi; | |
269 | else | |
270 | { | |
271 | sumDeltaPhi -= deltaPhi[0]; | |
272 | for (int u=0; u<deltaPhiBufferSize-1; u++) | |
273 | deltaPhi[u] = deltaPhi[u+1]; | |
274 | deltaPhi[deltaPhiBufferSize-1] = newDeltaPhi; | |
275 | } | |
276 | sumDeltaPhi += newDeltaPhi; | |
277 | ||
278 | // update other local variables | |
279 | for (int j=0; j<m; j++) | |
280 | { | |
281 | for (int jj=0; jj<p; jj++) | |
282 | { | |
283 | for (int r=0; r<k; r++) | |
284 | Phi[ai(jj,j,r,p,m,k)] = phi[ai(jj,j,r,p,m,k)]; | |
285 | } | |
286 | } | |
287 | ite++; | |
288 | } | |
289 | ||
290 | //free memory | |
291 | free(hatBetaR); | |
292 | free(deltaPhi); | |
293 | free(Phi); | |
294 | gsl_matrix_free(matrixE); | |
295 | gsl_matrix_free(matrixM); | |
296 | gsl_permutation_free(permutation); | |
297 | gsl_vector_free(work); | |
298 | gsl_matrix_free(V); | |
299 | gsl_vector_free(S); | |
300 | free(XiPhiR); | |
301 | free(YiRhoR); | |
302 | free(Xr); | |
303 | free(Yr); | |
304 | free(tXrXr); | |
305 | free(tXrYr); | |
306 | free(Z); | |
307 | } |