228ee602 |
1 | #' valse |
2 | #' |
3 | #' Main function |
4 | #' |
5 | #' @param X matrix of covariates (of size n*p) |
6 | #' @param Y matrix of responses (of size n*m) |
7 | #' @param procedure among 'LassoMLE' or 'LassoRank' |
8 | #' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC' |
9 | #' @param gamma integer for the power in the penaly, by default = 1 |
10 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 |
11 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 |
12 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 |
13 | #' @param kmin integer, minimum number of clusters, by default = 2 |
14 | #' @param kmax integer, maximum number of clusters, by default = 10 |
15 | #' @param rank.min integer, minimum rank in the low rank procedure, by default = 1 |
16 | #' @param rank.max integer, maximum rank in the low rank procedure, by default = 5 |
17 | #' @param ncores_outer Number of cores for the outer loop on k |
18 | #' @param ncores_inner Number of cores for the inner loop on lambda |
19 | #' @param thresh real, threshold to say a variable is relevant, by default = 1e-8 |
20 | #' @param compute_grid_lambda, TRUE to compute the grid, FALSE if known (in arguments) |
21 | #' @param grid_lambda, a vector with regularization parameters if known, by default 0 |
22 | #' @param size_coll_mod (Maximum) size of a collection of models |
23 | #' @param fast TRUE to use compiled C code, FALSE for R code only |
24 | #' @param verbose TRUE to show some execution traces |
25 | #' |
26 | #' @return a list with estimators of parameters |
27 | #' |
28 | #' @examples |
29 | #' #TODO: a few examples |
30 | #' @export |
31 | valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mini = 10, |
32 | maxi = 50, eps = 1e-04, kmin = 2, kmax = 3, rank.min = 1, rank.max = 5, ncores_outer = 1, |
33 | ncores_inner = 1, thresh = 1e-08, compute_grid_lambda = TRUE, grid_lambda = 0, size_coll_mod = 10, fast = TRUE, verbose = FALSE, |
34 | plot = TRUE) |
35 | { |
36 | n <- nrow(X) |
37 | p <- ncol(X) |
38 | m <- ncol(Y) |
39 | |
40 | if (verbose) |
41 | print("main loop: over all k and all lambda") |
42 | |
43 | if (ncores_outer > 1) { |
44 | cl <- parallel::makeCluster(ncores_outer, outfile = "") |
45 | parallel::clusterExport(cl = cl, envir = environment(), varlist = c("X", |
46 | "Y", "procedure", "selecMod", "gamma", "mini", "maxi", "eps", "kmin", |
47 | "kmax", "rank.min", "rank.max", "ncores_outer", "ncores_inner", "thresh", |
48 | "size_coll_mod", "verbose", "p", "m")) |
49 | } |
50 | |
51 | # Compute models with k components |
52 | computeModels <- function(k) |
53 | { |
54 | if (ncores_outer > 1) |
55 | require("valse") #nodes start with an empty environment |
56 | |
57 | if (verbose) |
58 | print(paste("Parameters initialization for k =", k)) |
59 | # smallEM initializes parameters by k-means and regression model in each |
60 | # component, doing this 20 times, and keeping the values maximizing the |
61 | # likelihood after 10 iterations of the EM algorithm. |
62 | P <- initSmallEM(k, X, Y, fast) |
63 | if (compute_grid_lambda == TRUE) |
64 | { |
65 | grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, |
66 | X, Y, gamma, mini, maxi, eps, fast) |
67 | } |
68 | if (length(grid_lambda) > size_coll_mod) |
69 | grid_lambda <- grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)] |
70 | |
71 | if (verbose) |
72 | print("Compute relevant parameters") |
73 | # select variables according to each regularization parameter from the grid: |
74 | # S$selected corresponding to selected variables |
75 | S <- selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, |
76 | gamma, grid_lambda, X, Y, thresh, eps, ncores_inner, fast) |
77 | |
78 | if (procedure == "LassoMLE") { |
79 | if (verbose) |
80 | print("run the procedure Lasso-MLE") |
81 | # compute parameter estimations, with the Maximum Likelihood Estimator, |
82 | # restricted on selected variables. |
83 | models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit, |
84 | P$gamInit, mini, maxi, gamma, X, Y, eps, S, ncores_inner, fast, verbose) |
85 | } else { |
86 | if (verbose) |
87 | print("run the procedure Lasso-Rank") |
88 | # compute parameter estimations, with the Low Rank Estimator, restricted on |
89 | # selected variables. |
90 | models <- constructionModelesLassoRank(S, k, mini, maxi, X, Y, eps, rank.min, |
91 | rank.max, ncores_inner, fast, verbose) |
92 | } |
93 | # warning! Some models are NULL after running selectVariables |
94 | models <- models[sapply(models, function(cell) !is.null(cell))] |
95 | models |
96 | } |
97 | |
98 | # List (index k) of lists (index lambda) of models |
99 | models_list <- |
100 | if (ncores_outer > 1) { |
101 | parLapply(cl, kmin:kmax, computeModels) |
102 | } else { |
103 | lapply(kmin:kmax, computeModels) |
104 | } |
105 | if (ncores_outer > 1) |
106 | parallel::stopCluster(cl) |
107 | |
108 | if (!requireNamespace("capushe", quietly = TRUE)) |
109 | { |
110 | warning("'capushe' not available: returning all models") |
111 | return(models_list) |
112 | } |
113 | |
114 | # Get summary 'tableauRecap' from models |
115 | tableauRecap <- do.call(rbind, lapply(seq_along(models_list), function(i) |
116 | { |
117 | models <- models_list[[i]] |
118 | # For a collection of models (same k, several lambda): |
119 | LLH <- sapply(models, function(model) model$llh[1]) |
120 | k <- length(models[[1]]$pi) |
121 | sumPen <- sapply(models, function(model) k * (dim(model$rho)[1] + sum(model$phi[, |
122 | , 1] != 0) + 1) - 1) |
123 | data.frame(model = paste(i, ".", seq_along(models), sep = ""), pen = sumPen/n, |
124 | complexity = sumPen, contrast = -LLH) |
125 | })) |
126 | tableauRecap <- tableauRecap[which(tableauRecap[, 4] != Inf), ] |
127 | if (verbose == TRUE) |
128 | { |
129 | print(tableauRecap) |
130 | } |
131 | modSel <- capushe::capushe(tableauRecap, n) |
132 | indModSel <- if (selecMod == "DDSE") |
133 | as.numeric(modSel@DDSE@model) else if (selecMod == "Djump") |
134 | as.numeric(modSel@Djump@model) else if (selecMod == "BIC") |
135 | modSel@BIC_capushe$model else if (selecMod == "AIC") |
136 | modSel@AIC_capushe$model |
137 | |
138 | mod <- as.character(tableauRecap[indModSel, 1]) |
139 | listMod <- as.integer(unlist(strsplit(mod, "[.]"))) |
140 | modelSel <- models_list[[listMod[1]]][[listMod[2]]] |
141 | |
142 | ## Affectations |
143 | Gam <- matrix(0, ncol = length(modelSel$pi), nrow = n) |
144 | for (i in 1:n) |
145 | { |
146 | for (r in 1:length(modelSel$pi)) |
147 | { |
148 | sqNorm2 <- sum((Y[i, ] %*% modelSel$rho[, , r] - X[i, ] %*% modelSel$phi[, , r])^2) |
149 | Gam[i, r] <- modelSel$pi[r] * exp(-0.5 * sqNorm2) * gdet(modelSel$rho[, , r]) |
150 | } |
151 | } |
152 | Gam <- Gam/rowSums(Gam) |
153 | modelSel$affec <- apply(Gam, 1, which.max) |
154 | modelSel$proba <- Gam |
155 | modelSel$tableau <- tableauRecap |
156 | |
157 | if (plot) |
158 | print(plot_valse(X, Y, modelSel, n)) |
159 | |
160 | return(modelSel) |
161 | } |