several modifs - pkg looks better (but untested)
[valse.git] / pkg / R / computeGridLambda.R
CommitLineData
086ca318
BA
1#' computeGridLambda
2#'
d1531659 3#' Construct the data-driven grid for the regularization parameters used for the Lasso estimator
086ca318 4#'
d1531659 5#' @param phiInit value for phi
e3f2fe8a 6#' @param rhoInit value for rho
e166ed4e 7#' @param piInit value for pi
d1531659 8#' @param gamInit value for gamma
e3f2fe8a 9#' @param X matrix of covariates (of size n*p)
10#' @param Y matrix of responses (of size n*m)
11#' @param gamma power of weights in the penalty
086ca318
BA
12#' @param mini minimum number of iterations in EM algorithm
13#' @param maxi maximum number of iterations in EM algorithm
14#' @param tau threshold to stop EM algorithm
15#'
d1531659 16#' @return the grid of regularization parameters
086ca318 17#'
d1531659 18#' @export
0eb161e3
BA
19computeGridLambda = function(phiInit, rhoInit, piInit, gamInit, X, Y,
20 gamma, mini, maxi, tau)
39046da6 21{
e166ed4e
BA
22 n = nrow(X)
23 p = dim(phiInit)[1]
24 m = dim(phiInit)[2]
25 k = dim(phiInit)[3]
26
0eb161e3
BA
27 # TODO: explain why gamma=1 instad of just 'gamma'?
28 list_EMG = EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi,
29 gamma=1, lamba=0, X, Y, tau)
e166ed4e
BA
30 grid = array(0, dim=c(p,m,k))
31 for (i in 1:p)
32 {
33 for (j in 1:m)
34 grid[i,j,] = abs(list_EMG$S[i,j,]) / (n*list_EMG$pi^gamma)
35 }
36 grid = unique(grid)
0eb161e3 37 grid = grid[grid <= 1]
086ca318 38 grid
39046da6 39}