228ee602 |
1 | #' computeGridLambda |
2 | #' |
3 | #' Construct the data-driven grid for the regularization parameters used for the Lasso estimator |
4 | #' |
5 | #' @param phiInit value for phi |
6 | #' @param rhoInit for rho |
7 | #' @param piInit for pi |
8 | #' @param gamInit value for gamma |
9 | #' @param X matrix of covariates (of size n*p) |
10 | #' @param Y matrix of responses (of size n*m) |
11 | #' @param gamma power of weights in the penalty |
12 | #' @param mini minimum number of iterations in EM algorithm |
13 | #' @param maxi maximum number of iterations in EM algorithm |
14 | #' @param tau threshold to stop EM algorithm |
15 | #' |
16 | #' @return the grid of regularization parameters |
17 | #' |
18 | #' @export |
19 | computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, |
20 | maxi, tau, fast) |
21 | { |
22 | n <- nrow(X) |
23 | p <- ncol(X) |
24 | m <- ncol(Y) |
25 | k <- length(piInit) |
26 | |
27 | list_EMG <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda = 0, |
28 | X, Y, tau, fast) |
29 | grid <- array(0, dim = c(p, m, k)) |
30 | for (j in 1:p) |
31 | { |
32 | for (mm in 1:m) |
33 | grid[j, mm, ] <- abs(list_EMG$S[j, mm, ])/(n * list_EMG$pi^gamma) |
34 | } |
35 | sort(unique(grid)) |
36 | } |