228ee602 |
1 | #' EMGLLF |
2 | #' |
3 | #' Description de EMGLLF |
4 | #' |
5 | #' @param phiInit an initialization for phi |
6 | #' @param rhoInit an initialization for rho |
7 | #' @param piInit an initialization for pi |
8 | #' @param gamInit initialization for the a posteriori probabilities |
9 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 |
10 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 |
11 | #' @param gamma integer for the power in the penaly, by default = 1 |
12 | #' @param lambda regularization parameter in the Lasso estimation |
13 | #' @param X matrix of covariates (of size n*p) |
14 | #' @param Y matrix of responses (of size n*m) |
15 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 |
16 | #' |
17 | #' @return A list ... phi,rho,pi,LLF,S,affec: |
18 | #' phi : parametre de moyenne renormalisé, calculé par l'EM |
19 | #' rho : parametre de variance renormalisé, calculé par l'EM |
20 | #' pi : parametre des proportions renormalisé, calculé par l'EM |
21 | #' LLF : log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres |
22 | #' S : ... affec : ... |
23 | #' |
24 | #' @export |
25 | EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
26 | X, Y, eps, fast) |
27 | { |
28 | if (!fast) |
29 | { |
30 | # Function in R |
31 | return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
32 | X, Y, eps)) |
33 | } |
34 | |
35 | # Function in C |
36 | n <- nrow(X) #nombre d'echantillons |
37 | p <- ncol(X) #nombre de covariables |
38 | m <- ncol(Y) #taille de Y (multivarié) |
39 | k <- length(piInit) #nombre de composantes dans le mélange |
40 | .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
41 | X, Y, eps, phi = double(p * m * k), rho = double(m * m * k), pi = double(k), |
42 | LLF = double(maxi), S = double(p * m * k), affec = integer(n), n, p, m, k, |
43 | PACKAGE = "valse") |
44 | } |
45 | |
46 | # R version - slow but easy to read |
47 | .EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
48 | X, Y, eps) |
49 | { |
50 | # Matrix dimensions |
51 | n <- nrow(X) |
52 | p <- ncol(X) |
53 | m <- ncol(Y) |
54 | k <- length(piInit) |
55 | |
56 | # Adjustments required when p==1 or m==1 (var.sel. or output dim 1) |
57 | if (p==1 || m==1) |
58 | phiInit <- array(phiInit, dim=c(p,m,k)) |
59 | if (m==1) |
60 | rhoInit <- array(rhoInit, dim=c(m,m,k)) |
61 | |
62 | # Outputs |
63 | phi <- phiInit |
64 | rho <- rhoInit |
65 | pi <- piInit |
66 | llh <- -Inf |
67 | S <- array(0, dim = c(p, m, k)) |
68 | |
69 | # Algorithm variables |
70 | gam <- gamInit |
71 | Gram2 <- array(0, dim = c(p, p, k)) |
72 | ps2 <- array(0, dim = c(p, m, k)) |
73 | X2 <- array(0, dim = c(n, p, k)) |
74 | Y2 <- array(0, dim = c(n, m, k)) |
75 | EPS <- 1e-15 |
76 | |
77 | for (ite in 1:maxi) |
78 | { |
79 | # Remember last pi,rho,phi values for exit condition in the end of loop |
80 | Phi <- phi |
81 | Rho <- rho |
82 | Pi <- pi |
83 | |
84 | # Computations associated to X and Y |
85 | for (r in 1:k) |
86 | { |
87 | for (mm in 1:m) |
88 | Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm] |
89 | for (i in 1:n) |
90 | X2[i, , r] <- sqrt(gam[i, r]) * X[i, ] |
91 | for (mm in 1:m) |
92 | ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r]) |
93 | for (j in 1:p) |
94 | { |
95 | for (s in 1:p) |
96 | Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r]) |
97 | } |
98 | } |
99 | |
100 | ## M step |
101 | |
102 | # For pi |
103 | b <- sapply(1:k, function(r) sum(abs(phi[, , r]))) |
104 | gam2 <- colSums(gam) |
105 | a <- sum(gam %*% log(pi)) |
106 | |
107 | # While the proportions are nonpositive |
108 | kk <- 0 |
109 | pi2AllPositive <- FALSE |
110 | while (!pi2AllPositive) |
111 | { |
112 | pi2 <- pi + 0.1^kk * ((1/n) * gam2 - pi) |
113 | pi2AllPositive <- all(pi2 >= 0) |
114 | kk <- kk + 1 |
115 | } |
116 | |
117 | # t(m) is the largest value in the grid O.1^k such that it is nonincreasing |
118 | while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) < |
119 | # na.rm=TRUE to handle 0*log(0) |
120 | -sum(gam2 * log(pi2), na.rm=TRUE)/n + lambda * sum(pi2^gamma * b)) |
121 | { |
122 | pi2 <- pi + 0.1^kk * (1/n * gam2 - pi) |
123 | kk <- kk + 1 |
124 | } |
125 | t <- 0.1^kk |
126 | pi <- (pi + t * (pi2 - pi))/sum(pi + t * (pi2 - pi)) |
127 | |
128 | # For phi and rho |
129 | for (r in 1:k) |
130 | { |
131 | for (mm in 1:m) |
132 | { |
133 | ps <- 0 |
134 | for (i in 1:n) |
135 | ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, r]) |
136 | nY2 <- sum(Y2[, mm, r]^2) |
137 | rho[mm, mm, r] <- (ps + sqrt(ps^2 + 4 * nY2 * gam2[r]))/(2 * nY2) |
138 | } |
139 | } |
140 | |
141 | for (r in 1:k) |
142 | { |
143 | for (j in 1:p) |
144 | { |
145 | for (mm in 1:m) |
146 | { |
147 | S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r] + |
148 | sum(phi[-j, mm, r] * Gram2[j, -j, r]) |
149 | if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) { |
150 | phi[j, mm, r] <- 0 |
151 | } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) { |
152 | phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, j, r] |
153 | } else { |
154 | phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, j, r] |
155 | } |
156 | } |
157 | } |
158 | } |
159 | |
160 | ## E step |
161 | |
162 | # Precompute det(rho[,,r]) for r in 1...k |
163 | detRho <- sapply(1:k, function(r) gdet(rho[, , r])) |
164 | sumLogLLH <- 0 |
165 | for (i in 1:n) |
166 | { |
167 | # Update gam[,]; use log to avoid numerical problems |
168 | logGam <- sapply(1:k, function(r) { |
169 | log(pi[r]) + log(detRho[r]) - 0.5 * |
170 | sum((Y[i, ] %*% rho[, , r] - X[i, ] %*% phi[, , r])^2) |
171 | }) |
172 | |
173 | logGam <- logGam - max(logGam) #adjust without changing proportions |
174 | gam[i, ] <- exp(logGam) |
175 | norm_fact <- sum(gam[i, ]) |
176 | gam[i, ] <- gam[i, ] / norm_fact |
177 | sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2)) |
178 | } |
179 | |
180 | sumPen <- sum(pi^gamma * b) |
181 | last_llh <- llh |
182 | llh <- -sumLogLLH/n #+ lambda * sumPen |
183 | dist <- ifelse(ite == 1, llh, (llh - last_llh)/(1 + abs(llh))) |
184 | Dist1 <- max((abs(phi - Phi))/(1 + abs(phi))) |
185 | Dist2 <- max((abs(rho - Rho))/(1 + abs(rho))) |
186 | Dist3 <- max((abs(pi - Pi))/(1 + abs(Pi))) |
187 | dist2 <- max(Dist1, Dist2, Dist3) |
188 | |
189 | if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps))) |
190 | break |
191 | } |
192 | |
193 | list(phi = phi, rho = rho, pi = pi, llh = llh, S = S) |
194 | } |