Commit | Line | Data |
---|---|---|
f310ba7f BA |
1 | % Generated by roxygen2 (4.0.2): do not edit by hand |
2 | \name{findSyncVarRegions} | |
3 | \alias{findSyncVarRegions} | |
4 | \title{Direct clustering from a neighborhoods graph, or get regions from (Poisson) | |
5 | distribution parameters optimization, using convex relaxation.} | |
6 | \usage{ | |
7 | findSyncVarRegions(method, M, k, alpha, gmode, K, dtype, cmeth, pcoef = 1, | |
8 | h = 0.001, eps = 0.001, maxit = 1000, showLL = TRUE, disp = TRUE) | |
9 | } | |
10 | \arguments{ | |
11 | \item{method}{Global method: "direct" or "convex"} | |
12 | ||
13 | \item{M}{Matrix of observations in rows, the two last columns | |
14 | corresponding to geographic coordinates; | |
15 | set to NULL to use our initial dataset (625 rows / 9 years)} | |
16 | ||
17 | \item{k}{Number of neighbors} | |
18 | ||
19 | \item{alpha}{Weight parameter for intra-neighborhoods distance computations; | |
20 | 0 = take only geographic coordinates into account; | |
21 | 1 = take only observations over the years into account; | |
22 | in-between : several levels of compromise; | |
23 | -1 or any negative value : use a heuristic to choose alpha.} | |
24 | ||
25 | \item{gmode}{Neighborhood type. 0 = reduced [mutual] kNN; 1 = augmented kNN (symmetric); | |
26 | 2 = normal kNN; 3 = one NN in each quadrant; (NON-symmetric). | |
27 | NOTE: gmode==3 automatically sets k==4 (at most!)} | |
28 | ||
29 | \item{K}{Number of clusters} | |
30 | ||
31 | \item{dtype}{Distance type, in {"simple","spath","ectd"}. | |
32 | NOTE: better avoid "simple" if gmode>=2} | |
33 | ||
34 | \item{cmeth}{Clustering method, in {"KM","HC","spec"} for k-means (distances based) | |
35 | or hierarchical clustering, or spectral clustering (only if gmode>=2)} | |
36 | ||
37 | \item{pcoef}{Penalty value for convex optimization [default: 1.0]} | |
38 | ||
39 | \item{h}{Step in the min LL algorithm [default: 1e-3]} | |
40 | ||
41 | \item{eps}{Threshold to stop min.LL iterations [default: 1e-3]} | |
42 | ||
43 | \item{maxit}{Maximum number of iterations in the min LL algo [default: 1e3]} | |
44 | ||
45 | \item{showLL}{Print trace of log-likelihood evolution [default: true]} | |
46 | ||
47 | \item{disp}{True [default] for interactive display (otherwise nothing gets plotted)} | |
48 | } | |
49 | \value{ | |
50 | list with the following entries. M: data matrix in input; NI: computed neighborhoods; | |
51 | dists: computed distances matrix; clusts: partition into K clusters, as an integer vector; | |
52 | cxpar: parameters obtained after convex optimization (if applicable) | |
53 | } | |
54 | \description{ | |
55 | Direct clustering from a neighborhoods graph, or get regions from (Poisson) | |
56 | distribution parameters optimization, using convex relaxation. | |
57 | } | |
58 | \examples{ | |
59 | cvr = findSyncVarRegions("convex",M=NULL,k=10,alpha=0.1,gmode=1,K=5,dtype="spath",cmeth="HC") | |
60 | drawMapWithSitez(cvr$M, cvr$clusters) | |
61 | drawNeighboroodGraph(cvr$M, cvr$NI) | |
62 | } | |
63 |