improve/fix comments - TODO: debug examples, CSV and after
[epclust.git] / epclust / R / main.R
CommitLineData
8702eb86 1#' CLAWS: CLustering with wAvelets and Wer distanceS
7f0781b7 2#'
eef6f6c9
BA
3#' Cluster electricity power curves (or any series of similar nature) by applying a
4#' two stage procedure in parallel (see details).
5#' Input series must be sampled on the same time grid, no missing values.
6#'
d9bb53c5
BA
7#' Summary of the function execution flow:
8#' \enumerate{
9#' \item Compute and serialize all contributions, obtained through discrete wavelet
10#' decomposition (see Antoniadis & al. [2013])
11#' \item Divide series into \code{ntasks} groups to process in parallel. In each task:
eef6f6c9 12#' \enumerate{
d9bb53c5 13#' \item iterate the first clustering algorithm on its aggregated outputs,
3fb6e823
BA
14#' on inputs of size \code{nb_items_clust}\cr
15#' -> K1 medoids indices
16#' \item optionally, if WER=="mix":\cr
17#' a. compute WER distances (K1xK1) between medoids\cr
18#' b. apply the 2nd clustering algorithm\cr
19#' -> K2 medoids indices
eef6f6c9 20#' }
d9bb53c5 21#' \item Launch a final task on the aggregated outputs of all previous tasks:
40f12a2f
BA
22#' ntasks*K1 if WER=="end", ntasks*K2 otherwise
23#' \item Compute synchrones (sum of series within each final group)
d9bb53c5 24#' }
3fb6e823 25#'
40f12a2f
BA
26#' The main argument -- \code{series} -- has a quite misleading name, since it can be
27#' either a [big.]matrix, a CSV file, a connection or a user function to retrieve series.
3fb6e823
BA
28#' When \code{series} is given as a function it must take a single argument,
29#' 'indices': integer vector equal to the indices of the curves to retrieve;
40f12a2f 30#' see SQLite example.
a52836b2 31#' WARNING: the return value must be a matrix (in columns), or NULL if no matches.
3fb6e823 32#'
d9bb53c5 33#' Note: Since we don't make assumptions on initial data, there is a possibility that
40f12a2f 34#' even when serialized, contributions do not fit in RAM. For example,
d9bb53c5
BA
35#' 30e6 series of length 100,000 would lead to a +4Go contribution matrix. Therefore,
36#' it's safer to place these in (binary) files; that's what we do.
7f0781b7 37#'
3fb6e823 38#' @param series Access to the N (time-)series, which can be of one of the four
8702eb86
BA
39#' following types:
40#' \itemize{
eef6f6c9 41#' \item [big.]matrix: each column contains the (time-ordered) values of one time-serie
bf5c0844
BA
42#' \item connection: any R connection object providing lines as described above
43#' \item character: name of a CSV file containing series in rows (no header)
8702eb86 44#' \item function: a custom way to retrieve the curves; it has only one argument:
eef6f6c9 45#' the indices of the series to be retrieved. See SQLite example
8702eb86 46#' }
3fb6e823 47#' @param K1 Number of clusters to be found after stage 1 (K1 << N)
1c6f223e 48#' @param K2 Number of clusters to be found after stage 2 (K2 << K1)
3fb6e823
BA
49#' @param nb_series_per_chunk Number of series to retrieve in one batch
50#' @param nb_items_clust Number of items in 1st clustering algorithm input
0486fbad 51#' @param algoClust1 Clustering algorithm for stage 1. A function which takes (data, K)
2b9f5356 52#' as argument where data is a matrix in columns and K the desired number of clusters,
3fb6e823 53#' and outputs K medoids ranks. Default: PAM.
0486fbad 54#' @param algoClust2 Clustering algorithm for stage 2. A function which takes (dists, K)
2b9f5356 55#' as argument where dists is a matrix of distances and K the desired number of clusters,
3fb6e823 56#' and outputs K medoids ranks. Default: PAM.
eef6f6c9
BA
57#' @param wav_filt Wavelet transform filter; see ?wavelets::wt.filter
58#' @param contrib_type Type of contribution: "relative", "logit" or "absolute" (any prefix)
59#' @param WER "end" to apply stage 2 after stage 1 has fully iterated, or "mix" to apply
60#' stage 2 at the end of each task
3fb6e823 61#' @param smooth_lvl Smoothing level: odd integer, 1 == no smoothing.
a52836b2 62#' @param nvoice Number of voices within each octave for CWT computations
4bcfdbee 63#' @param random TRUE (default) for random chunks repartition
eef6f6c9
BA
64#' @param ntasks Number of tasks (parallel iterations to obtain K1 [if WER=="end"]
65#' or K2 [if WER=="mix"] medoids); default: 1.
66#' Note: ntasks << N (number of series), so that N is "roughly divisible" by ntasks
3fb6e823
BA
67#' @param ncores_tasks Number of parallel tasks ('1' == sequential tasks)
68#' @param ncores_clust Number of parallel clusterings in one task
4bcfdbee 69#' @param sep Separator in CSV input file (if any provided)
3fb6e823
BA
70#' @param nbytes Number of bytes to serialize a floating-point number: 4 or 8
71#' @param endian Endianness for (de)serialization: "little" or "big"
72#' @param verbose FALSE: nothing printed; TRUE: some execution traces
73#' @param parll TRUE: run in parallel. FALSE: run sequentially
7f0781b7 74#'
3fb6e823 75#' @return A list:
40f12a2f 76#' \itemize{
3fb6e823
BA
77#' \item medoids: matrix of the final K2 medoids curves
78#' \item ranks: corresponding indices in the dataset
79#' \item synchrones: sum of series within each final group
40f12a2f 80#' }
eef6f6c9
BA
81#'
82#' @references Clustering functional data using Wavelets [2013];
83#' A. Antoniadis, X. Brossat, J. Cugliari & J.-M. Poggi.
84#' Inter. J. of Wavelets, Multiresolution and Information Procesing,
85#' vol. 11, No 1, pp.1-30. doi:10.1142/S0219691313500033
1c6f223e
BA
86#'
87#' @examples
4efef8cc 88#' \dontrun{
eef6f6c9 89#' # WER distances computations are too long for CRAN (for now)
4efef8cc
BA
90#'
91#' # Random series around cos(x,2x,3x)/sin(x,2x,3x)
3fb6e823
BA
92#' x <- seq(0,50,0.05)
93#' L <- length(x) #1001
282342ba 94#' ref_series <- matrix( c(cos(x),cos(2*x),cos(3*x),sin(x),sin(2*x),sin(3*x)), ncol=6 )
4efef8cc 95#' library(wmtsa)
282342ba 96#' series <- do.call( cbind, lapply( 1:6, function(i)
3fb6e823
BA
97#' do.call(cbind, wmtsa::wavBootstrap(ref_series[,i], n.realization=40)) ) )
98#' #dim(series) #c(240,1001)
99#' res_ascii <- claws(series, K1=30, K2=6, 100, verbose=TRUE)
4efef8cc
BA
100#'
101#' # Same example, from CSV file
3fb6e823
BA
102#' csv_file <- tempfile(pattern="epclust_series.csv_")
103#' write.table(t(series), csv_file, sep=",", row.names=FALSE, col.names=FALSE)
104#' res_csv <- claws(csv_file, K1=30, K2=6, 100)
4efef8cc
BA
105#'
106#' # Same example, from binary file
3fb6e823 107#' bin_file <- tempfile(pattern="epclust_series.bin_")
eef6f6c9
BA
108#' nbytes <- 8
109#' endian <- "little"
110#' binarize(csv_file, bin_file, 500, nbytes, endian)
111#' getSeries <- function(indices) getDataInFile(indices, bin_file, nbytes, endian)
3fb6e823 112#' res_bin <- claws(getSeries, K1=30, K2=6, 100)
4efef8cc
BA
113#' unlink(csv_file)
114#' unlink(bin_file)
115#'
116#' # Same example, from SQLite database
117#' library(DBI)
118#' series_db <- dbConnect(RSQLite::SQLite(), "file::memory:")
119#' # Prepare data.frame in DB-format
eef6f6c9
BA
120#' n <- nrow(series)
121#' time_values <- data.frame(
282342ba
BA
122#' id <- rep(1:n,each=L),
123#' time <- rep( as.POSIXct(1800*(0:n),"GMT",origin="2001-01-01"), L ),
124#' value <- as.double(t(series)) )
4efef8cc 125#' dbWriteTable(series_db, "times_values", times_values)
4bcfdbee
BA
126#' # Fill associative array, map index to identifier
127#' indexToID_inDB <- as.character(
128#' dbGetQuery(series_db, 'SELECT DISTINCT id FROM time_values')[,"id"] )
eef6f6c9
BA
129#' serie_length <- as.integer( dbGetQuery(series_db,
130#' paste("SELECT COUNT * FROM time_values WHERE id == ",indexToID_inDB[1],sep="")) )
131#' getSeries <- function(indices) {
132#' request <- "SELECT id,value FROM times_values WHERE id in ("
4bcfdbee 133#' for (i in indices)
eef6f6c9
BA
134#' request <- paste(request, indexToID_inDB[i], ",", sep="")
135#' request <- paste(request, ")", sep="")
136#' df_series <- dbGetQuery(series_db, request)
a52836b2
BA
137#' if (length(df_series) >= 1)
138#' as.matrix(df_series[,"value"], nrow=serie_length)
139#' else
140#' NULL
4efef8cc 141#' }
3fb6e823 142#' res_db <- claws(getSeries, K1=30, K2=6, 100))
4bcfdbee
BA
143#' dbDisconnect(series_db)
144#'
40f12a2f
BA
145#' # All results should be the same:
146#' library(digest)
147#' digest::sha1(res_ascii)
148#' digest::sha1(res_csv)
149#' digest::sha1(res_bin)
150#' digest::sha1(res_db)
1c6f223e 151#' }
1c6f223e 152#' @export
3c5a4b08 153claws <- function(series, K1, K2, nb_series_per_chunk, nb_items_clust=7*K1,
40f12a2f
BA
154 algoClust1=function(data,K) cluster::pam(t(data),K,diss=FALSE,pamonce=1)$id.med,
155 algoClust2=function(dists,K) cluster::pam(dists,K,diss=TRUE,pamonce=1)$id.med,
282342ba
BA
156 wav_filt="d8", contrib_type="absolute", WER="end", smooth_lvl=3, nvoice=4,
157 random=TRUE, ntasks=1, ncores_tasks=1, ncores_clust=3, sep=",", nbytes=4,
d9bb53c5 158 endian=.Platform$endian, verbose=FALSE, parll=TRUE)
ac1d4231 159{
0e2dce80 160 # Check/transform arguments
40f12a2f
BA
161 if (!is.matrix(series) && !bigmemory::is.big.matrix(series)
162 && !is.function(series)
163 && !methods::is(series,"connection") && !is.character(series))
0e2dce80 164 {
40f12a2f 165 stop("'series': [big]matrix, function, file or valid connection (no NA)")
5c652979 166 }
eef6f6c9
BA
167 K1 <- .toInteger(K1, function(x) x>=2)
168 K2 <- .toInteger(K2, function(x) x>=2)
37c82bba 169 nb_series_per_chunk <- .toInteger(nb_series_per_chunk, function(x) x>=1)
3c5a4b08 170 nb_items_clust <- .toInteger(nb_items_clust, function(x) x>K1)
eef6f6c9 171 random <- .toLogical(random)
282342ba
BA
172 tryCatch({ignored <- wavelets::wt.filter(wav_filt)},
173 error=function(e) stop("Invalid wavelet filter; see ?wavelets::wt.filter") )
174 ctypes <- c("relative","absolute","logit")
175 contrib_type <- ctypes[ pmatch(contrib_type,ctypes) ]
eef6f6c9
BA
176 if (is.na(contrib_type))
177 stop("'contrib_type' in {'relative','absolute','logit'}")
7f0781b7 178 if (WER!="end" && WER!="mix")
eef6f6c9
BA
179 stop("'WER': in {'end','mix'}")
180 random <- .toLogical(random)
181 ntasks <- .toInteger(ntasks, function(x) x>=1)
182 ncores_tasks <- .toInteger(ncores_tasks, function(x) x>=1)
183 ncores_clust <- .toInteger(ncores_clust, function(x) x>=1)
56857861
BA
184 if (!is.character(sep))
185 stop("'sep': character")
eef6f6c9
BA
186 nbytes <- .toInteger(nbytes, function(x) x==4 || x==8)
187 verbose <- .toLogical(verbose)
188 parll <- .toLogical(parll)
56857861 189
40f12a2f 190 # Binarize series if it is not a function; the aim is to always use a function,
2b9f5356 191 # to uniformize treatments. An equally good alternative would be to use a file-backed
d9bb53c5 192 # bigmemory::big.matrix, but it would break the "all-is-function" pattern.
40f12a2f 193 if (!is.function(series))
56857861 194 {
4bcfdbee 195 if (verbose)
a52836b2 196 cat("...Serialize time-series (or retrieve past binary file)\n")
282342ba 197 series_file <- ".series.epclust.bin"
a52836b2 198 if (!file.exists(series_file))
40f12a2f 199 binarize(series, series_file, nb_series_per_chunk, sep, nbytes, endian)
282342ba 200 getSeries <- function(inds) getDataInFile(inds, series_file, nbytes, endian)
56857861 201 }
40f12a2f 202 else
282342ba 203 getSeries <- series
ac1d4231 204
95b5c2e6 205 # Serialize all computed wavelets contributions into a file
282342ba
BA
206 contribs_file <- ".contribs.epclust.bin"
207 index <- 1
208 nb_curves <- 0
4bcfdbee 209 if (verbose)
a52836b2
BA
210 cat("...Compute contributions and serialize them (or retrieve past binary file)\n")
211 if (!file.exists(contribs_file))
212 {
282342ba 213 nb_curves <- binarizeTransform(getSeries,
40f12a2f 214 function(curves) curvesToContribs(curves, wav_filt, contrib_type),
a52836b2
BA
215 contribs_file, nb_series_per_chunk, nbytes, endian)
216 }
217 else
218 {
219 # TODO: duplicate from getDataInFile() in de_serialize.R
282342ba
BA
220 contribs_size <- file.info(contribs_file)$size #number of bytes in the file
221 contrib_length <- readBin(contribs_file, "integer", n=1, size=8, endian=endian)
222 nb_curves <- (contribs_size-8) / (nbytes*contrib_length)
a52836b2 223 }
282342ba 224 getContribs <- function(indices) getDataInFile(indices, contribs_file, nbytes, endian)
8e6accca 225
2b9f5356 226 # A few sanity checks: do not continue if too few data available.
eef6f6c9
BA
227 if (nb_curves < K2)
228 stop("Not enough data: less series than final number of clusters")
282342ba 229 nb_series_per_task <- round(nb_curves / ntasks)
eef6f6c9
BA
230 if (nb_series_per_task < K2)
231 stop("Too many tasks: less series in one task than final number of clusters")
ac1d4231 232
d9bb53c5
BA
233 # Generate a random permutation of 1:N (if random==TRUE);
234 # otherwise just use arrival (storage) order.
282342ba 235 indices_all <- if (random) sample(nb_curves) else seq_len(nb_curves)
2b9f5356 236 # Split (all) indices into ntasks groups of ~same size
282342ba
BA
237 indices_tasks <- lapply(seq_len(ntasks), function(i) {
238 upper_bound <- ifelse( i<ntasks, min(nb_series_per_task*i,nb_curves), nb_curves )
2b9f5356
BA
239 indices_all[((i-1)*nb_series_per_task+1):upper_bound]
240 })
241
242 if (parll && ntasks>1)
243 {
244 # Initialize parallel runs: outfile="" allow to output verbose traces in the console
245 # under Linux. All necessary variables are passed to the workers.
3fb6e823
BA
246 cl <-
247 if (verbose)
248 parallel::makeCluster(ncores_tasks, outfile="")
249 else
250 parallel::makeCluster(ncores_tasks)
282342ba 251 varlist <- c("ncores_clust","verbose","parll", #task 1 & 2
3c5a4b08
BA
252 "K1","getContribs","algoClust1","nb_items_clust") #task 1
253 if (WER=="mix")
254 {
255 # Add variables for task 2
282342ba
BA
256 varlist <- c(varlist, "K2","getSeries","algoClust2","nb_series_per_chunk",
257 "smooth_lvl","nvoice","nbytes","endian")
3c5a4b08 258 }
282342ba 259 parallel::clusterExport(cl, varlist, envir <- environment())
2b9f5356
BA
260 }
261
262 # This function achieves one complete clustering task, divided in stage 1 + stage 2.
3c5a4b08
BA
263 # stage 1: n indices --> clusteringTask1(...) --> K1 medoids (indices)
264 # stage 2: K1 indices --> K1xK1 WER distances --> clusteringTask2(...) --> K2 medoids,
282342ba
BA
265 # where n == N / ntasks, N being the total number of curves.
266 runTwoStepClustering <- function(inds)
492cd9e7 267 {
d9bb53c5 268 # When running in parallel, the environment is blank: we need to load the required
2b9f5356 269 # packages, and pass useful variables.
bf5c0844 270 if (parll && ntasks>1)
492cd9e7 271 require("epclust", quietly=TRUE)
282342ba 272 indices_medoids <- clusteringTask1(inds, getContribs, K1, algoClust1,
3c5a4b08 273 nb_items_clust, ncores_clust, verbose, parll)
40f12a2f 274 if (WER=="mix")
56857861 275 {
282342ba
BA
276 indices_medoids <- clusteringTask2(indices_medoids, getSeries, K2, algoClust2,
277 nb_series_per_chunk,smooth_lvl,nvoice,nbytes,endian,ncores_clust,verbose,parll)
56857861
BA
278 }
279 indices_medoids
492cd9e7
BA
280 }
281
c45fd663 282 if (verbose)
e161499b 283 {
282342ba 284 message <- paste("...Run ",ntasks," x stage 1", sep="")
e161499b 285 if (WER=="mix")
282342ba 286 message <- paste(message," + stage 2", sep="")
e161499b
BA
287 cat(paste(message,"\n", sep=""))
288 }
c45fd663 289
3c5a4b08
BA
290 # As explained above, we obtain after all runs ntasks*[K1 or K2] medoids indices,
291 # depending wether WER=="end" or "mix", respectively.
40f12a2f 292 indices_medoids_all <-
eef6f6c9
BA
293 if (parll && ntasks>1)
294 unlist( parallel::parLapply(cl, indices_tasks, runTwoStepClustering) )
295 else
296 unlist( lapply(indices_tasks, runTwoStepClustering) )
40f12a2f 297
bf5c0844 298 if (parll && ntasks>1)
492cd9e7 299 parallel::stopCluster(cl)
3465b246 300
3c5a4b08
BA
301 # For the last stage, ncores_tasks*(ncores_clusts+1) cores should be available:
302 # - ntasks for level 1 parallelism
303 # - ntasks*ncores_clust for level 2 parallelism,
304 # but since an extension MPI <--> tasks / OpenMP <--> sub-tasks is on the way,
305 # it's better to just re-use ncores_clust
306 ncores_last_stage <- ncores_clust
0e2dce80 307
3fb6e823
BA
308
309
310#TODO: here, save all inputs to clusteringTask2 and compare :: must have differences...
311
312
313
3c5a4b08 314 # Run last clustering tasks to obtain only K2 medoids indices
4bcfdbee
BA
315 if (verbose)
316 cat("...Run final // stage 1 + stage 2\n")
282342ba 317 indices_medoids <- clusteringTask1(indices_medoids_all, getContribs, K1, algoClust1,
3c5a4b08 318 nb_items_clust, ncores_tasks*ncores_clust, verbose, parll)
282342ba
BA
319 indices_medoids <- clusteringTask2(indices_medoids, getContribs, K2, algoClust2,
320 nb_series_per_chunk,smooth_lvl,nvoice,nbytes,endian,ncores_last_stage,verbose,parll)
4bcfdbee 321
3c5a4b08
BA
322 # Compute synchrones, that is to say the cumulated power consumptions for each of the K2
323 # final groups.
282342ba
BA
324 medoids <- getSeries(indices_medoids)
325 synchrones <- computeSynchrones(medoids, getSeries, nb_curves, nb_series_per_chunk,
3c5a4b08 326 ncores_last_stage, verbose, parll)
4bcfdbee 327
40f12a2f
BA
328 # NOTE: no need to use big.matrix here, since there are only K2 << K1 << N remaining curves
329 list("medoids"=medoids, "ranks"=indices_medoids, "synchrones"=synchrones)
cea14f3a 330}