fix typo, add some TODO
[epclust.git] / epclust / R / clustering.R
CommitLineData
4bcfdbee
BA
1#' @name clustering
2#' @rdname clustering
492cd9e7 3#' @aliases clusteringTask1 computeClusters1 computeClusters2
4bcfdbee 4#'
492cd9e7 5#' @title Two-stage clustering, withing one task (see \code{claws()})
4bcfdbee 6#'
492cd9e7
BA
7#' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in
8#' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed
bf5c0844
BA
9#' through discrete wavelets coefficients).
10#' \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones
11#' and then WER distances computations, before applying the clustering algorithm.
12#' \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic
13#' clustering procedures respectively for stage 1 and 2. The former applies the
14#' clustering algorithm (PAM) on a contributions matrix, while the latter clusters
15#' a chunk of series inside one task (~max nb_series_per_chunk)
4bcfdbee
BA
16#'
17#' @param indices Range of series indices to cluster in parallel (initial data)
18#' @param getContribs Function to retrieve contributions from initial series indices:
19#' \code{getContribs(indices)} outpus a contributions matrix
20#' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()})
777c4b02 21#' @param distances matrix of K1 x K1 (WER) distances between synchrones
4bcfdbee
BA
22#' @inheritParams computeSynchrones
23#' @inheritParams claws
24#'
492cd9e7 25#' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the
4bcfdbee 26#' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus
24ed5d83 27#' \code{computeClusters2()} outputs a big.matrix of medoids
4bcfdbee
BA
28#' (of size limited by nb_series_per_chunk)
29NULL
30
31#' @rdname clustering
32#' @export
492cd9e7
BA
33clusteringTask1 = function(
34 indices, getContribs, K1, nb_series_per_chunk, ncores_clust=1, verbose=FALSE, parll=TRUE)
5c652979 35{
492cd9e7 36 if (verbose)
e161499b 37 cat(paste("*** Clustering task 1 on ",length(indices)," lines\n", sep=""))
4bcfdbee 38
492cd9e7 39 if (parll)
7b13d0c2 40 {
492cd9e7
BA
41 cl = parallel::makeCluster(ncores_clust)
42 parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment())
7b13d0c2 43 }
492cd9e7
BA
44 while (length(indices) > K1)
45 {
46 indices_workers = .spreadIndices(indices, nb_series_per_chunk)
e161499b
BA
47 indices <-
48 if (parll)
49 {
50 unlist( parallel::parLapply(cl, indices_workers, function(inds) {
51 require("epclust", quietly=TRUE)
52 inds[ computeClusters1(getContribs(inds), K1, verbose) ]
53 }) )
54 }
55 else
56 {
57 unlist( lapply(indices_workers, function(inds)
58 inds[ computeClusters1(getContribs(inds), K1, verbose) ]
59 ) )
60 }
492cd9e7
BA
61 }
62 if (parll)
63 parallel::stopCluster(cl)
64
56857861 65 indices #medoids
5c652979
BA
66}
67
4bcfdbee
BA
68#' @rdname clustering
69#' @export
bf5c0844 70clusteringTask2 = function(medoids, K2,
492cd9e7 71 getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
5c652979 72{
e161499b
BA
73 if (verbose)
74 cat(paste("*** Clustering task 2 on ",nrow(medoids)," lines\n", sep=""))
75
bf5c0844
BA
76 if (nrow(medoids) <= K2)
77 return (medoids)
492cd9e7
BA
78 synchrones = computeSynchrones(medoids,
79 getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll)
80 distances = computeWerDists(synchrones, ncores_clust, verbose, parll)
777c4b02 81 medoids[ computeClusters2(distances,K2,verbose), ]
5c652979
BA
82}
83
bf5c0844
BA
84#' @rdname clustering
85#' @export
e161499b
BA
86computeClusters1 = function(contribs, K1, verbose=FALSE)
87{
88 if (verbose)
89 cat(paste(" computeClusters1() on ",nrow(contribs)," lines\n", sep=""))
bf5c0844 90 cluster::pam(contribs, K1, diss=FALSE)$id.med
e161499b 91}
bf5c0844
BA
92
93#' @rdname clustering
94#' @export
e161499b
BA
95computeClusters2 = function(distances, K2, verbose=FALSE)
96{
97 if (verbose)
98 cat(paste(" computeClusters2() on ",nrow(distances)," lines\n", sep=""))
bf5c0844 99 cluster::pam(distances, K2, diss=TRUE)$id.med
e161499b 100}
bf5c0844 101
4bcfdbee
BA
102#' computeSynchrones
103#'
104#' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids,
105#' using L2 distances.
106#'
24ed5d83 107#' @param medoids big.matrix of medoids (curves of same length as initial series)
4bcfdbee
BA
108#' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series
109#' have been replaced by stage-1 medoids)
492cd9e7 110#' @param nb_ref_curves How many reference series? (This number is known at this stage)
4bcfdbee
BA
111#' @inheritParams claws
112#'
24ed5d83
BA
113#' @return A big.matrix of size K1 x L where L = data_length
114#'
4bcfdbee 115#' @export
492cd9e7
BA
116computeSynchrones = function(medoids, getRefSeries,
117 nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
e205f218 118{
e161499b
BA
119 if (verbose)
120 cat(paste("--- Compute synchrones\n", sep=""))
121
492cd9e7 122 computeSynchronesChunk = function(indices)
3eef8d3d 123 {
492cd9e7 124 ref_series = getRefSeries(indices)
e161499b 125 nb_series = nrow(ref_series)
e161499b 126
363ae134
BA
127 if (parll)
128 {
129 require("bigmemory", quietly=TRUE)
130 require("synchronicity", quietly=TRUE)
131 require("epclust", quietly=TRUE)
132 synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
133 medoids <- bigmemory::attach.big.matrix(medoids_desc)
134 m <- synchronicity::attach.mutex(m_desc)
135 }
136
363ae134 137 #get medoids indices for this chunk of series
2c14dbea 138 mi = computeMedoidsIndices(medoids@address, ref_series)
363ae134
BA
139# #R-equivalent, requiring a matrix (thus potentially breaking "fit-in-memory" hope)
140# mat_meds = medoids[,]
141# mi = rep(NA,nb_series)
142# for (i in 1:nb_series)
143# mi[i] <- which.min( rowSums( sweep(mat_meds, 2, ref_series[i,], '-')^2 ) )
144# rm(mat_meds); gc()
e161499b
BA
145
146 for (i in seq_len(nb_series))
56857861 147 {
492cd9e7
BA
148 if (parll)
149 synchronicity::lock(m)
e161499b 150 synchrones[mi[i],] = synchrones[mi[i],] + ref_series[i,]
2c14dbea 151#TODO: remove counts
e161499b 152 counts[mi[i],1] = counts[mi[i],1] + 1
492cd9e7
BA
153 if (parll)
154 synchronicity::unlock(m)
155 }
156 }
157
e161499b 158 K = nrow(medoids) ; L = ncol(medoids)
492cd9e7 159 # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in //
24ed5d83 160 # TODO: if size > RAM (not our case), use file-backed big.matrix
e161499b
BA
161 synchrones = bigmemory::big.matrix(nrow=K, ncol=L, type="double", init=0.)
162 counts = bigmemory::big.matrix(nrow=K, ncol=1, type="double", init=0)
24ed5d83 163 # synchronicity is only for Linux & MacOS; on Windows: run sequentially
492cd9e7
BA
164 parll = (requireNamespace("synchronicity",quietly=TRUE)
165 && parll && Sys.info()['sysname'] != "Windows")
166 if (parll)
363ae134 167 {
492cd9e7 168 m <- synchronicity::boost.mutex()
363ae134
BA
169 m_desc <- synchronicity::describe(m)
170 synchrones_desc = bigmemory::describe(synchrones)
171 medoids_desc = bigmemory::describe(medoids)
492cd9e7 172
24ed5d83
BA
173 cl = parallel::makeCluster(ncores_clust)
174 parallel::clusterExport(cl,
363ae134 175 varlist=c("synchrones_desc","counts","verbose","m_desc","medoids_desc","getRefSeries"),
24ed5d83
BA
176 envir=environment())
177 }
178
492cd9e7 179 indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk)
c45fd663 180 ignored <-
492cd9e7 181 if (parll)
e161499b 182 parallel::parLapply(cl, indices_workers, computeSynchronesChunk)
492cd9e7 183 else
c45fd663 184 lapply(indices_workers, computeSynchronesChunk)
492cd9e7 185
24ed5d83
BA
186 if (parll)
187 parallel::stopCluster(cl)
188
189 #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') )
492cd9e7 190 for (i in seq_len(K))
24ed5d83 191 synchrones[i,] = synchrones[i,] / counts[i,1]
3eef8d3d 192 #NOTE: odds for some clusters to be empty? (when series already come from stage 2)
8702eb86 193 # ...maybe; but let's hope resulting K1' be still quite bigger than K2
24ed5d83
BA
194 noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,])))
195 if (all(noNA_rows))
196 return (synchrones)
197 # Else: some clusters are empty, need to slice synchrones
198 synchrones[noNA_rows,]
e205f218 199}
1c6f223e 200
4bcfdbee
BA
201#' computeWerDists
202#'
203#' Compute the WER distances between the synchrones curves (in rows), which are
204#' returned (e.g.) by \code{computeSynchrones()}
205#'
24ed5d83
BA
206#' @param synchrones A big.matrix of synchrones, in rows. The series have same length
207#' as the series in the initial dataset
492cd9e7 208#' @inheritParams claws
4bcfdbee 209#'
777c4b02 210#' @return A matrix of size K1 x K1
24ed5d83 211#'
4bcfdbee 212#' @export
492cd9e7 213computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
d03c0621 214{
e161499b
BA
215 if (verbose)
216 cat(paste("--- Compute WER dists\n", sep=""))
24ed5d83 217
4bcfdbee
BA
218 n <- nrow(synchrones)
219 delta <- ncol(synchrones)
db6fc17d 220 #TODO: automatic tune of all these parameters ? (for other users)
d03c0621 221 nvoice <- 4
4bcfdbee 222 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones))
d7d55bc1
BA
223 noctave = 13
224 # 4 here represent 2^5 = 32 half-hours ~ 1 day
db6fc17d 225 #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
24ed5d83 226 scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1)
db6fc17d
BA
227 #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
228 s0=2
229 w0=2*pi
230 scaled=FALSE
231 s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
232 totnoct = noctave + as.integer(s0log/nvoice) + 1
233
e161499b
BA
234 Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double")
235 fcoefs = rep(1/3, 3) #moving average on 3 values
236
237 # Generate n(n-1)/2 pairs for WER distances computations
238 pairs = list()
239 V = seq_len(n)
240 for (i in 1:n)
241 {
242 V = V[-1]
243 pairs = c(pairs, lapply(V, function(v) c(i,v)))
244 }
245
777c4b02 246 # Distance between rows i and j
e161499b
BA
247 computeDistancesIJ = function(pair)
248 {
2c14dbea 249 if (parll)
363ae134 250 {
2c14dbea
BA
251 require("bigmemory", quietly=TRUE)
252 require("epclust", quietly=TRUE)
253 synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
254 Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc)
255 }
256
257 computeCWT = function(index)
258 {
259 ts <- scale(ts(synchrones[index,]), center=TRUE, scale=scaled)
363ae134
BA
260 totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE)
261 ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
262 #Normalization
263 sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
264 sqres <- sweep(ts.cwt,2,sqs,'*')
265 sqres / max(Mod(sqres))
266 }
2c14dbea 267#browser()
e161499b
BA
268 i = pair[1] ; j = pair[2]
269 if (verbose && j==i+1)
270 cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep=""))
2c14dbea
BA
271print(system.time( { cwt_i <- computeCWT(i)
272 cwt_j <- computeCWT(j) } ))
273
274print(system.time( {
363ae134
BA
275 num <- epclustFilter(Mod(cwt_i * Conj(cwt_j)))
276 WX <- epclustFilter(Mod(cwt_i * Conj(cwt_i)))
277 WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j)))
e161499b 278 wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY))
2c14dbea 279 Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * max(1 - wer2, 0.)) #FIXME: wer2 should be < 1
e161499b 280 Xwer_dist[j,i] <- Xwer_dist[i,j]
2c14dbea 281} ) )
e161499b
BA
282 Xwer_dist[i,i] = 0.
283 }
284
492cd9e7
BA
285 if (parll)
286 {
287 cl = parallel::makeCluster(ncores_clust)
363ae134 288 synchrones_desc <- bigmemory::describe(synchrones)
2c14dbea 289 Xwer_dist_desc <- bigmemory::describe(Xwer_dist)
363ae134
BA
290
291 parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct",
292 "nvoice","w0","s0log","noctave","s0","verbose"), envir=environment())
492cd9e7 293 }
2c14dbea 294browser()
e161499b 295 ignored <-
492cd9e7 296 if (parll)
e161499b 297 parallel::parLapply(cl, pairs, computeDistancesIJ)
492cd9e7 298 else
e161499b 299 lapply(pairs, computeDistancesIJ)
492cd9e7
BA
300
301 if (parll)
302 parallel::stopCluster(cl)
2c14dbea 303#browser()
492cd9e7 304 Xwer_dist[n,n] = 0.
777c4b02
BA
305 distances <- Xwer_dist[,]
306 rm(Xwer_dist) ; gc()
307 distances #~small matrix K1 x K1
492cd9e7
BA
308}
309
310# Helper function to divide indices into balanced sets
311.spreadIndices = function(indices, nb_per_chunk)
312{
313 L = length(indices)
314 nb_workers = floor( L / nb_per_chunk )
315 if (nb_workers == 0)
316 {
317 # L < nb_series_per_chunk, simple case
318 indices_workers = list(indices)
319 }
320 else
321 {
322 indices_workers = lapply( seq_len(nb_workers), function(i)
323 indices[(nb_per_chunk*(i-1)+1):(nb_per_chunk*i)] )
324 # Spread the remaining load among the workers
325 rem = L %% nb_per_chunk
326 while (rem > 0)
327 {
328 index = rem%%nb_workers + 1
329 indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1])
330 rem = rem - 1
d03c0621 331 }
1c6f223e 332 }
492cd9e7 333 indices_workers
1c6f223e 334}