Commit | Line | Data |
---|---|---|
7f0781b7 | 1 | #' @include defaults.R |
3dcbfeef | 2 | |
7f0781b7 BA |
3 | #' @title Cluster power curves with PAM in parallel |
4 | #' | |
5 | #' @description Groups electricity power curves (or any series of similar nature) by applying PAM | |
cea14f3a | 6 | #' algorithm in parallel to chunks of size \code{nb_series_per_chunk} |
7f0781b7 BA |
7 | #' |
8 | #' @param data Access to the data, which can be of one of the three following types: | |
9 | #' \itemize{ | |
10 | #' \item data.frame: each line contains its ID in the first cell, and all values after | |
11 | #' \item connection: any R connection object (e.g. a file) providing lines as described above | |
12 | #' \item function: a custom way to retrieve the curves; it has two arguments: the start index | |
13 | #' (start) and number of curves (n); see example in package vignette. | |
14 | #' } | |
15 | #' @param K Number of clusters | |
cea14f3a BA |
16 | #' @param nb_series_per_chunk (Maximum) number of series in each group |
17 | #' @param min_series_per_chunk Minimum number of series in each group | |
7f0781b7 BA |
18 | #' @param writeTmp Function to write temporary wavelets coefficients (+ identifiers); |
19 | #' see defaults in defaults.R | |
20 | #' @param readTmp Function to read temporary wavelets coefficients (see defaults.R) | |
3465b246 | 21 | #' @param wf Wavelet transform filter; see ?wt.filter. Default: haar |
7f0781b7 BA |
22 | #' @param WER "end" to apply stage 2 after stage 1 has iterated and finished, or "mix" |
23 | #' to apply it after every stage 1 | |
24 | #' @param ncores number of parallel processes; if NULL, use parallel::detectCores() | |
25 | #' | |
26 | #' @return A data.frame of the final medoids curves (identifiers + values) | |
cea14f3a | 27 | epclust = function(data, K, nb_series_per_chunk, min_series_per_chunk=10*K, |
3465b246 | 28 | writeTmp=defaultWriteTmp, readTmp=defaultReadTmp, wf="haar", WER="end", ncores=NULL) |
ac1d4231 | 29 | { |
7f0781b7 BA |
30 | #TODO: setRefClass(...) to avoid copy data: |
31 | #http://stackoverflow.com/questions/2603184/r-pass-by-reference | |
ac1d4231 | 32 | |
7f0781b7 BA |
33 | #0) check arguments |
34 | if (!is.data.frame(data) && !is.function(data)) | |
6ecf5c2d BA |
35 | tryCatch( |
36 | { | |
37 | if (is.character(data)) | |
38 | { | |
cea14f3a | 39 | data_con = file(data, open="r") |
6ecf5c2d BA |
40 | } else if (!isOpen(data)) |
41 | { | |
42 | open(data) | |
cea14f3a | 43 | data_con = data |
6ecf5c2d BA |
44 | } |
45 | }, | |
7f0781b7 BA |
46 | error="data should be a data.frame, a function or a valid connection") |
47 | if (!is.integer(K) || K < 2) | |
48 | stop("K should be an integer greater or equal to 2") | |
cea14f3a BA |
49 | if (!is.integer(nb_series_per_chunk) || nb_series_per_chunk < K) |
50 | stop("nb_series_per_chunk should be an integer greater or equal to K") | |
7f0781b7 BA |
51 | if (!is.function(writeTmp) || !is.function(readTmp)) |
52 | stop("read/writeTmp should be functional (see defaults.R)") | |
53 | if (WER!="end" && WER!="mix") | |
54 | stop("WER takes values in {'end','mix'}") | |
55 | #concerning ncores, any non-integer type will be treated as "use parallel:detectCores()" | |
ac1d4231 | 56 | |
3d061515 | 57 | #1) acquire data (process curves, get as coeffs) |
7f0781b7 | 58 | index = 1 |
cea14f3a | 59 | nb_curves = 0 |
6ecf5c2d | 60 | repeat |
ac1d4231 | 61 | { |
cea14f3a | 62 | coeffs_chunk = NULL |
7f0781b7 | 63 | if (is.data.frame(data)) |
3dcbfeef | 64 | { |
7f0781b7 | 65 | #full data matrix |
b9f1c0c7 BA |
66 | if (index < nrow(data)) |
67 | { | |
cea14f3a | 68 | coeffs_chunk = curvesToCoeffs( |
3465b246 | 69 | data[index:(min(index+nb_series_per_chunk-1,nrow(data))),], wf) |
b9f1c0c7 | 70 | } |
7f0781b7 BA |
71 | } else if (is.function(data)) |
72 | { | |
73 | #custom user function to retrieve next n curves, probably to read from DB | |
3465b246 | 74 | coeffs_chunk = curvesToCoeffs( data(index, nb_series_per_chunk), wf ) |
7f0781b7 BA |
75 | } else |
76 | { | |
77 | #incremental connection | |
78 | #TODO: find a better way to parse than using a temp file | |
cea14f3a | 79 | ascii_lines = readLines(data_con, nb_series_per_chunk) |
b9f1c0c7 BA |
80 | if (length(ascii_lines > 0)) |
81 | { | |
cea14f3a BA |
82 | series_chunk_file = ".tmp/series_chunk" |
83 | writeLines(ascii_lines, series_chunk_file) | |
3465b246 | 84 | coeffs_chunk = curvesToCoeffs( read.csv(series_chunk_file), wf ) |
b9f1c0c7 | 85 | } |
3dcbfeef | 86 | } |
cea14f3a BA |
87 | if (is.null(coeffs_chunk)) |
88 | break | |
89 | writeTmp(coeffs_chunk) | |
90 | nb_curves = nb_curves + nrow(coeffs_chunk) | |
91 | index = index + nb_series_per_chunk | |
8e6accca | 92 | } |
cea14f3a BA |
93 | if (exists(data_con)) |
94 | close(data_con) | |
95 | if (nb_curves < min_series_per_chunk) | |
96 | stop("Not enough data: less rows than min_series_per_chunk!") | |
8e6accca | 97 | |
cea14f3a | 98 | #2) process coeffs (by nb_series_per_chunk) and cluster them in parallel |
8e6accca | 99 | library(parallel) |
7f0781b7 | 100 | ncores = ifelse(is.integer(ncores), ncores, parallel::detectCores()) |
8e6accca | 101 | cl = parallel::makeCluster(ncores) |
7f0781b7 | 102 | parallel::clusterExport(cl=cl, varlist=c("X", "Y", "K", "p"), envir=environment()) |
6ecf5c2d | 103 | #TODO: be careful of writing to a new temp file, then flush initial one, then re-use it... |
8e6accca BA |
104 | repeat |
105 | { | |
cea14f3a BA |
106 | #while there is jobs to do (i.e. size of tmp "file" is greater than nb_series_per_chunk) |
107 | nb_workers = nb_curves %/% nb_series_per_chunk | |
108 | indices = list() | |
3465b246 | 109 | #indices[[i]] == (start_index,number_of_elements) |
cea14f3a BA |
110 | for (i in 1:nb_workers) |
111 | indices[[i]] = c(nb_series_per_chunk*(i-1)+1, nb_series_per_chunk) | |
112 | remainder = nb_curves %% nb_series_per_chunk | |
113 | if (remainder >= min_series_per_chunk) | |
114 | { | |
115 | nb_workers = nb_workers + 1 | |
116 | indices[[nb_workers]] = c(nb_curves-remainder+1, nb_curves) | |
117 | } else if (remainder > 0) | |
118 | { | |
119 | #spread the load among other workers | |
120 | ||
121 | } | |
3465b246 | 122 | li = parallel::parLapply(cl, indices, processChunk, K, WER=="mix") |
8e6accca | 123 | #C) flush tmp file (current parallel processes will write in it) |
8e6accca | 124 | } |
7f0781b7 | 125 | parallel::stopCluster(cl) |
3d061515 | 126 | |
8e6accca | 127 | #3) readTmp last results, apply PAM on it, and return medoids + identifiers |
cea14f3a BA |
128 | final_coeffs = readTmp(1, nb_series_per_chunk) |
129 | if (nrow(final_coeffs) == K) | |
130 | { | |
131 | return ( list( medoids=coeffsToCurves(final_coeffs[,2:ncol(final_coeffs)]), | |
132 | ids=final_coeffs[,1] ) ) | |
133 | } | |
134 | pam_output = getClusters(as.matrix(final_coeffs[,2:ncol(final_coeffs)]), K) | |
3465b246 | 135 | medoids = coeffsToCurves(pam_output$medoids, wf) |
cea14f3a | 136 | ids = final_coeffs[,1] [pam_output$ranks] |
ac1d4231 | 137 | |
8e6accca BA |
138 | #4) apply stage 2 (in parallel ? inside task 2) ?) |
139 | if (WER == "end") | |
140 | { | |
141 | #from center curves, apply stage 2... | |
3465b246 | 142 | #TODO: |
8e6accca | 143 | } |
3465b246 BA |
144 | |
145 | return (list(medoids=medoids, ids=ids)) | |
ac1d4231 | 146 | } |
cea14f3a | 147 | |
3465b246 | 148 | processChunk = function(indice, K, WER) |
cea14f3a BA |
149 | { |
150 | #1) retrieve data | |
3465b246 | 151 | coeffs = readTmp(indice[1], indice[2]) |
cea14f3a | 152 | #2) cluster |
3465b246 | 153 | cl = getClusters(as.matrix(coeffs[,2:ncol(coeffs)]), K) |
cea14f3a | 154 | #3) WER (optional) |
3465b246 | 155 | #TODO: |
cea14f3a | 156 | } |
3465b246 BA |
157 | |
158 | #TODO: difficulté : retrouver courbe à partir de l'identifiant (DB ok mais le reste ?) | |
159 | #aussi : que passe-t-on aux noeuds ? curvesToCoeffs en // ? | |
160 | #enfin : WER ?! |